A molecule with a radius of curvature, less than that of the minor groove, has a much lower DNA affinity. In the highly curved molecules greater conformational changes are needed in the molecule to open the radius of curvature to that of the DNA minor groove. These large conformational changes have a higher energy and therefore lower the DNA affinity of the compound.

Low polynucleotide affinity was seen with the metasubstituted compounds (compare 12 with 13, 1 with 31, and 42 with 43); this was most distinct with the AT homopolymer. This low DNA and homopolymer affinity of the meta-substituted compounds can also be rationalized by their shape. In this situation the meta compounds do not have low-energy conformers consistent with DNA minorgroove binding. Study of the conformers in the meta cases is complicated by rotational conformers of the aromatic rings, therefore more than one meta conformer must be considered. Analysis of the molecular models of 13 shows that there are three planar relatively low-energy conformations of the molecule. Molecular models of these three conformations are shown in Figure 5. The data in Table II show that none of the conformations have a radius of curvature close to that required for the minor groove of DNA. Conformer A in Figure 5 has the lowest molecular mechanics energy and also has a radius of curvature that is much too large for facile interaction with the minor groove. Conformer B (middle structure) has a radius of curvature close to ideal for interaction with the minor groove, but in this conformer the amidino groups are on opposite sides of the aromatic rings and only one of the amidino groups at a time can interact with the DNA. Conformer C in Figure 5 has both of the amidino groups

on the same side of the benzene rings and is higher in energy than conformer A or B. Conformer C has a radius of curvature that is too small to allow full interaction with DNA. Table II contains two radius of curvature measurements for the two conformers of compound 23 containing a four methylene linking unit and meta-substituted amidine groups. Space-filling molecular mechanics models of these two conformers are shown in Figure 6. Neither of these conformers has the proper radius of curvature to be an effective minor-groove-binding compound.

In conclusion, our studies show that the strength of DNA or homopolymer polynucleotide minor-groove-binding, as described by a thermal denaturation assay, of a large series of pentamidine (1) analogues can be described by the conformation of the molecules. The radius of curvature of molecular mechanics models can act as a descriptor of the strength of DNA groove binding. This measurement can be used to predict the minor-groove-binding properties of hypothetical new anti-PCP compounds. This effect is seen as a relative strengthening and weakening of the DNA-binding interaction. Although all of the compounds in this series did bind to DNA and homopolymers, all of the compounds also show some activity, within the limitations of toxicity, in the in vivo *P. carinii* assay.³

Acknowledgment. We thank Susan Pulley and Carrie McClung for assistance with the DNA binding measurements, Daniel Cory for assistance with the radius of curvature measurements, and Lisa St. John for the automation of the viscosity measurements. These studies were funded in part by Public Health Service Contract N01-AI-7264.

2-[(2-Pyridylmethyl)sulfinyl]-1H-thieno[3,4-d]imidazoles. A Novel Class of Gastric H⁺/K⁺-ATPase Inhibitors

Klaus Weidmann,* Andreas W. Herling, Hans-Jochen Lang, Karl-Heinz Scheunemann, Robert Rippel, Hildegard Nimmesgern, Thomas Scholl, Martin Bickel, and Heinz Metzger

Hoechst AG, Pharma Research, P.O. Box 80 03 20, 6230 Frankfurt 80, Germany. Received March 5, 1990

2-[(2-Pyridylmethyl)sulfinyl]thienoimidazoles were synthesized and investigated as potential inhibitors of gastric H^+/K^+ -ATPase. The [3,4-d] isomers of the two possible thienoimidazole series were found to be potent inhibitors of gastric acid secretion in vitro and in vivo. Structure-activity relationships indicate that especially lipophilic alkoxy, benzyloxy, and phenoxy substituents with additional electron-demanding properties in the 4-position of the pyridine moiety combined with an unsubstituted thieno[3,4-d]imidazole lead to highly active compounds with a favorable chemical stability. Various substitution patterns in the thieno[3,4-d]imidazole moiety result in lower biological activity. The heptafluorobutyloxy derivative saviprazole (HOE 731, 5d) was selected for further development and is currently undergoing clinical evaluation. Comprehensive pharmacological studies indicate a pharmacodynamic profile different to omeprazole, the first H^+/K^+ -ATPase blocker introduced on the market.

Introduction

Inhibition of gastric acid secretion has been proven to be a powerful therapeutic principle in the treatment of gastric and duodenal ulcer disease.¹ Gastric acid secretion is regulated by interaction of basolateral parietal cell receptors with their physiological stimulants gastrin, acetylcholine, and histamine.² Anticholinergics and especially H_2 -receptor antagonists have therefore become antisecretory agents of major importance.

2-[(2-Pyridylmethyl)sulfinyl]benzimidazoles like omeprazole represent a new class of effective gastric acid secretion inhibitors.³ Their antisecretory activity has been ascribed to a highly specific inhibitory action on the gastric proton pump, the H^+/K^+ -ATPase,⁴ which is responsible for the transport of gastric acid into the lumen of the

Soll, A. H.; Isenberg, J. I. In Duodenal Ulcer Diseases in Gastrointestinal Disease; Sleisenger, M. H., Fordtran, J. S., Eds.; Saunders: Philadelphia, 1983; pp 625-672.

⁽²⁾ Sachs, G. The Parietal Cell as a Therapeutic Target. Scand. J. Gastroenterol. Suppl. 1986, 21 (Suppl. 118), 1-10.

⁽³⁾ Fellenius, E.; Berglindh, T.; Sachs, G.; Olbe, L.; Elander, B.; Sjöstrand, S.-E.; Wallmark, B. Substituted Benzimidazoles Inhibit Gastric Acid Secretion by Blocking (H⁺/K⁺)-ATPase. Nature 1981, 290, 159–161.

^{(4) (}a) Ganser, A. L.; Forte, J. G. K⁺-Stimulated ATPase in Purified Microsomes of Bullfrog Oxyntic Cells. Biochim. Biophys. Acta 1973, 307, 169–180. (b) Sachs, G.; Chang, H. H.; Rabon, E.; Schackmann, R.; Lewin, M.; Saccomani, G. A Non-Electrogenic H⁺-pump in Plasma Membranes of Hog Stomach. J. Biol. Chem. 1976, 251, 7690–7698. (c) Wallmark, B.; Larsson, H.; Humble, L. The Relationship Between Gastric Acid Secretion and Gastric H⁺/K⁺-ATPase Activity. J. Biol. Chem. 1985, 260, 13861–13684.

Novel Gastric H⁺/K⁺-ATPase Inhibitors

stomach. Acid secretion is therefore blocked at the final step of its production, independent of the different kinds of its stimulation.⁵

Omeprazole's superiority to the H_2 -receptor antagonists in the treatment of duodenal ulcer and reflux oesophagitis is evident,⁶ although its safety is still controversial.⁷ In view of the side effects of long-lasting inhibition of acid secretion, e.g., hypergastrinemia and enterochromaffin-like (ECL) cell hyperplasia,⁸ we focused our efforts on H⁺/ K⁺-ATPase inhibitors with an omeprazole-like mode of action, but with different pharmacodynamic properties compared to omeprazole.

Due to omeprazole's highly specific mode of action,⁹ the possibilities for structural modifications are very restricted. In this context Brandström et al. claimed the three structural elements of omeprazole, the substituted pyridine ring, the substituted benzimidazole moiety, and the methylsulfinyl chain connecting these two, as being essential for the biological effect.¹⁰ Indeed, up to now, all known omeprazole-like, potent H⁺/K⁺-ATPase blockers are benzimidazoles.¹¹ The narrow range for structural variations of H⁺/K⁺-ATPase blockers also become evident for

- (5) Cederberg, C.; Ekenved, G.; Lind, T.; Olbe, L. Acid Inhibitory Characteristics of Omeprazole in Man. Scand. J. Gastroenterol. Suppl. 1985, 20 (Suppl. 108), 105-112.
- (6) Clissold, S. P.; Campoli-Richards, D. M. Omeprazole. A Preliminary Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Peptic Ulcer Disease and Zollinger-Ellison Syndrome. Drugs 1986, 32, 12-47.
- (7) (a) Penston, J.; Wormsley, K. G. Achlorhydria: Hypergastrinaemia: Carcinoids A Flawed Hypothesis. Gut 1987, 28, 488-505. (b) Hakanson, R.; Sundler, F. Proposed Mechanism of Induction of Gastric Carcinoids: The Gastrin Hypothesis. Eur. J. Clin. Invest. 1990, 20 (Suppl. 1), 65-71.
- (8) (a) Creutzfeldt, W.; Stöckmann, F.; Conlon, J. M.; Fölsch, U. R.; Bonatz, G.; Wülfrath, M. Effect of Short- and Long-Term Feeding of Omeprazole on Rat Gastric Endocrine Cells. Digestion 1986, 35 (Suppl. 1), 84-97. (b) Larsson, H.; Carlsson, E.; Mattsson, H. Plasma Gastrin and Gastric Entero-chromaffin-Like Cell Activation and Proliferation. Studies with Omeprazole and Ranitidine in Intact and Antrectomized Rats. Gastroenterology 1986, 90, 391-399.
- (9) (a) Lindberg, P.; Brändström, A.; Wallmark, B. Structure-Activity Relationships of Omeprazole Analogues and Their Mechanisms of Action. Trends Pharmacol. Sci. 1987, 8, 399-402. (b) Lindberg, P.; Nordberg, P.; Alminger, T.; Brandström, A.; Wallmark, B. The Mechanism of Action of the Gastric Acid Secretion Inhibitor Omeprazole. J. Med. Chem. 1986, 29, 1327-1329. (c) Figala, V.; Klemm, K.; Kohl, B.; Krüger, U.; Rainer, G.; Schaefer, H.; Senn-Bilfinger, J.; Sturm, E. Acid Activation of (H⁺-K⁺)-ATPase Inhibiting 2-(2-Pyridylmethyl)sulfinyl)benzimidazoles: Isolation and Characterization of the Thiophilic 'Active Principle' and its Reactions. J. Chem. Soc., Chem. Commun. 1986, 125-127. (d) Rackur, G.; Bickel, M.; Fehlhaber, H.-W.; Herling, A.; Hitzel, V.; Lang, H.-J.; Rösner, M.; Weyer, R. 2-((2-Pyridylmethyl)sulfinyl)benzimidazoles: Acid Sensitive Suicide Inhibitors of the Proton Transport System in the Parietal Cell. Biochem. Biophys. Res. Commun. 1985, 128, 477-480.
- (10) Brändström, A.; Lindberg, P.; Junggren, U. Structure Activity Relationships of Substituted Benzimidazoles. Scand. J. Gastroenterol. Suppl. 1985, 20 (Suppl. 108), 15-22.
- (11) (a) Nagaya, H.; Satoh, H.; Kubo, K.; Maki, Y. Possible Mechanism for the Inhibition of Gastric (H⁺-K⁺)-ATPase by the Proton Pump Inhibitor AG-1749. J. Pharmacol. Exp. Ther. 1989, 248, 799-815. (b) Disuprazole: Sih, J. C.; Im, W. B.; Robert, A.; Graber, D. R.; Blakeman, D. P. Studies on (H⁺-K⁺)-ATPase Inhibitors of Gastric Acid Secretion. Prodrugs of 2-[(2-Pyridylmethyl)sulfinyl]benzimidazole Proton Pump Inhibitors. J. Med. Chem. 1991, 34, 1049-1062. (c) Sigrist-Nelson, K.; Krasso, A.; Müller, R. K. M.; Fischili, A. E. RO 18-5364, A Potent New Inhibitor of the Gastric (H⁺/K⁺)-ATPase. Eur. J. Biochem. 1987, 166, 453-459.

Scheme I^a

° (a) 1,1'-thiocarbonyldiimidazole or CS₂, AcOH, MeI; (b) method A: (1) EtOH, reflux, (2) NEt₃ in MeOH, 25 °C; (c) method B: NaOCH₃, MeOH, 20 to 65 °C; (d) *m*-CPBA, CH₂Cl₂, aqueous NaHCO₃, 5 to 25 °C.

the 2-[(2-aminobenzyl)sulfinyl]benzimidazoles, a new class of acid secretion inhibitors, which have also been investigated independently by four other research teams.^{12,13}

In addition to our first approach to modify the weakly basic pyridine moiety leading to these 2-[(2-aminobenzyl)sulfinyl]benzimidazoles,¹² we were interested in evaluating 5-membered heterocycles with an annellated imidazole ring (1). In the local anesthetics prilocaine and articaine, the change from a benzene to a substituted thiophene ring resulted in other pharmacodynamic properties, leading to a different therapeutic quality.¹⁴ In analogy we focused our efforts on the two isomeric thienoimidazole series, the [3,4-d] and the [2,3-d] compounds 2-8 and 9, respectively. Some compounds of the latter series have recently also been disclosed in a patent application by others.¹⁵

In order to evaluate their pharmacological activity, the thienoimidazoles were examined in a wide variety of pharmacological and biochemical assays.

In vitro inhibitory effects were determined in gastric vesicles containing H^+/K^+ -ATPase¹⁶ and by [¹⁴C]amino-

- (13) (a) Fisons plc, European Patent Application EP 0174717, 1986. (b) Nippon Chemiphar Co. Ltd., Belgian Patent Application BE 903 128, 1985. (c) Byk-Gulden GmbH, European Patent Application EP 0232 399, 1987. (d) Adelstein, G. W.; Yen, C. H.; Haak, R. A.; Yu, S.; Gullikson, G.; Price, D. V. Substituted 2-[(2-Benzimidazolylsulfinyl)methyl]anilines as Potential Inhibitors of H⁺/K⁺-ATPase. J. Med. Chem. 1988, 31, 1215–1220.
- (14) Rippel, R.; Muschaweck, R. Ein neues Lokalanästhetikum (Carticain) aus der Thiophenreihe. Prakt. Anaesth. 1974, 9, 135-146.
- (15) Chemie Linz AG, European Patent Application EP 0 201 094, 1986.

⁽¹²⁾ Hoechst AG, European Patent Application EP 0213474, 1987.

pyrine accumulation in rabbit gastric glands.¹⁷ In vivo the compounds were studied in pylorus-ligated rats,¹⁸ in stomach-lumen-perfused rats¹⁹ and in Heidenhain-pouch dogs.²⁰

Chemistry

The new compounds 2-8 were synthesized as outlined in Scheme I. 2-Mercaptothieno[3,4-d]imidazole (11a) (R¹, R² = H)²¹ was readily obtained by reduction of 2,5-dibromo-2,4-dinitrothiophene followed by condensation of the resulting diamine 10a with thiocarbonyldiimidazole. In analogy the 2,5-dimethyl derivative 11b (R¹, R² = CH₃) was synthesized from 2,5-dimethyl-3,4-dinitrothiophene.²² To further study the effect of 2-substituents in the thieno[3,4-d]imidazole moiety, phenyl,²³ acetyl,²⁴ and alkoxycarbonyl²⁵ derivatives were investigated.

Alkylation of 11 with the appropriately substituted 2picolyl halides 12-17 under neutral or alkaline conditions yielded the desired sulfides 18-24 by method A or B (Table I). When neutral conditions were used, the thioethers precipitated as dihydrohalides, which were subsequently treated with triethylamine in methanol to yield the free

- (16) Ljungström, M.; Norberg, L.; Olaisson, H.; Wernstedt, C.; Vega, E. V. Characterization of Proton-Transporting Membranes from Resting Pig Gastric Mucosa. *Biochim. Biophys.* Acta 1984, 769, 209–219.
- (17) (a) Berglindh, T.; Helander, H.; Öbrink, K. J. Effects of Secretagogues on Oxygen Consumption, Aminopyrine Accumulation and Morphology in Isolated Gastric Glands. Acta Physiol. Scand. 1976, 97, 401-414. (b) Sack, J.; Spenney, J. G. Aminopyrine Accumulation by Mammalian Gastric Glands: An Analysis of the Technique. Am. J. Physiol. 1982, 243, G313-G319.
- (18) Shay, H.; Sun, D. C. H.; Gruenstein, M. A Quantitative Method for Measuring Spontaneous Gastric Secretion in the Rat. *Gastroenterology* 1954, 26, 906-913.
- (19) Barrett, A. M. Specific Stimulation of Gastric Acid Secretion by a Pentapeptide Derivative of Gastrin. J. Pharm. Pharmacol. 1966, 18, 633-639.
- (20) De Vito, R. V.; Harkins, H. N. Techniques in Heidenhain Pouch Experiments. J. Appl. Physiol. 1959, 14, 138-139.
- (21) Outurquin, F.; Paulmier, C. Synthèse de Nouveaux Systèmes Hětěrocycliques Thiophéniques Azotës à Partir du Diamino-3,4-thiophène. Bull. Soc. Chim. Fr. 1983, 159–163.
- (22) Steinkopf, W.; Poulsson, I.; Herdey, O. Studien in der Thiophenreihe. XLIII. Abkömmlinge des 2,5-Thioxens. *Liebigs* Ann. Chem. 1938, 536, 128-134.
- (23) 3,4-Diamino-2-phenylthiophene derivatives were prepared from the corresponding 4-amino-2-phenyl-2,3,4,5-tetrahydrothiophen-3-ones.
- (24) Hartaugh, H. D.; Kosak, A. I. Acylation Studies in the Thiophene and Furan Series. IV. Strong Inorganic Oxyacids as Catalysts. J. Am. Chem. Soc. 1947, 69, 3093-3096.
- (25) (a) Rossy, P.; Vogel, F. G. M.; Hoffmann, W.; Paust, J.; Nürrenbach, A. A New Synthesis of Biotin. *Tetrahedron Lett.* 1981, 22, 3493–3496. (b) BASF Ger. Pat. 30 18 134.

Weidmann et al.

^a (a) R'OH, base, DMF or N,N-dimethylacetamide, 20 to 150 °C; (b) Ac₂O, AcOH, 120 °C; (c) 2 N NaOH, MeOH, 25 °C; (d) SOCl₂, CH₂Cl₂, 25 °C.

bases. Because of the high sensitivity of the sulfoxides 2-8 (Table II) toward acid, oxidations were performed with m-chloroperbenzoic acid in a mixture of dichloromethane and aqueous NaHCO₃ solution. Small amounts of thioethers and the corresponding sulfones were removed by crystallization and/or chromatography. Compound 9a was obtained as previously described¹⁵ starting from 2,3-diaminothiophene. Substituted 2-picolyl halides 12-17 were prepared either according to the literature or in analogy to known methods.

The synthesis of 4-alkoxy-substituted pyridine derivatives is summarized in Scheme II. Nucleophilic substitution reactions of 4-nitro(or 4-chloro)-2-picoline N-oxides 26 with the alcohols R'OH under basic conditions²⁶ were followed by rearrangement of 27-32 to the acetates,^{26,27} subsequent saponification, isolation, and purification of the alcohols 33-38, and conversion to the 2-picolyl halides 12-17. Alternatively 12-17 could also be obtained by reduction of N-oxides 27-32 and subsequent chlorination of the corresponding 2-picolines with trichloroisocyanuric acid²⁸ or bromination with N-bromosuccinimide. Starting from the known 3-(or 5-)halogen-substituted 2picolines,²⁹⁻³¹ compounds of series 3 and 4 were obtained. 3-Methoxy- and 3-(1,1,1-trifluoroethoxy)-substituted derivatives (series 7) were synthesized starting with the alkylation of maltol.³² Difluoromethoxy and 1,1,2,2-tetra-

- (26) Abramovitch, R. A.; Smith, E. M. Pyridine-1-oxides in Pyridine and its Derivatives. In *The Chemistry of Heterocyclic Compounds*; Weissberger, A., Taylor, E. C., Eds.; John Wiley: New York, 1974; Pt. 2, pp 1-261.
- (27) Oae, S.; Kitao, T.; Kitaoka, Y. The Mechanism of the Reaction of 2-Picoline N-oxide with Acetic Anhydride. J. Am. Chem. Soc. 1962, 84, 3359–3362.
- (28) Jeromin, G. É.; Orth, W.; Rapp, B.; Weiss, W. Seitenkettenchlorierungen von N-Heterocyclen mit Trichlorisocyanursäure (TCC). Chem. Ber. 1987, 120, 649–651.
- (29) Blanz, E. J., Jr.; French, F. A.; DoAmarol, J. R.; French, D. A. Carcinostatic Activity of Thiosemicarbazones of Formyl Heteroaromatic Compounds. VII. 2-Formylpyridine Derivatives Bearing Additional Ring Substituents. J. Med. Chem. 1970, 13, 1124-1130.
- (30) Smith, Kline and French, European Patent Application EP 0184 322, 1986.
- (31) Abblard, J.; Decoret, C.; Cronenberger, L.; Pacheo, H. Préparation et Détermination de Structure de Nouvelles Pyridines Halogēneës. Mechanisme de L'Halogēnation. Bull. Soc. Chim. Fr. 1972, 2466-2481.
- (32) Fisher, B. E.; Hodge, J. E. The Structure of Isomaltol. J. Org. Chem. 1964, 29, 776-781.

fluoroethoxy derivatives 71-n were prepared by addition of difluorocarbene (from $CHClF_2$) or tetrafluoroethylene to the appropriate hydroxy-2-picolines.³³

Results and Discussion

In general, the compounds were first investigated in rabbit gastric glands and in pylorus-ligated rats. If gastric acid secretion in these models was suppressed significantly, then the compounds were further studied in stomach-lumen-perfused rats and in the enzyme test. If an inhibition of acid secretion could be confirmed in these assays, then the compounds were evaluated in Heidenhain-pouch dogs (Table III).

Sometimes [¹⁴C]aminopyrine accumulation in rabbit gastric glands was observed indicating strong effects, although an inhibitory action in the in vivo models could not be verified. As previously shown for 2-[[2-(N-ethylamino)benzyl]sulfinyl]-5,6-dimethoxybenzimidazole, S 3337, there is no strict correlation between the effects in rats, particularly in pylorus-ligated rats, and in dogs.³⁴ Obviously, results of only one or two different test systems often are insufficient to characterize a H^+/K^+ -ATPase blocking agent. Hence, a complete set of assays should be performed to define a H⁺/K⁺-ATPase blocker. Inhibitory activity data from stomach-lumen-perfused rats and especially from Heidenhain-pouch dogs are of particular importance. It is well accepted that irreversible inhibitors of the gastric H^+/K^+ -ATPase are acid-labile prodrugs which accumulate as weak bases in the secretory cannaliculus of the parietal cell and are transformed to the "active principle" by protic activation.⁹ Therefore, H^+/K^+ -ATPase blockers have to be highly reactive at low pH, although the prerequisite for their selective biological activity is a relatively high chemical stability under physiological conditions around neutral pH. Chemical handling also demands a certain degree of chemical stability. One of the major problems is that the biological activity of the compounds investigated frequently correlates with their chemical lability. Many compounds showing excellent inhibitory data (e.g. 2i and 7a) are often too unstable to be of further interest. Obviously, chemical stability is an important additional criterion for the evaluation of a potential H⁺/K⁺-ATPase inhibitor.^{35,36}

Therefore, compounds 2–9 have been classified routinely according to their relative chemical stability (Table II), determined in phosphate-buffered acetonitrile solution ($\sim 10^{-3}$ M, pH 7.4) by TLC analysis, in comparison to the parent system 2a. Compounds as stable or more stable than 2a could be manipulated in a routine way. Chemical handling of the sulfoxides 2–8 became increasingly difficult, the more these were less stable than 2a.

In analogy to the specific activation process of omeprazole, it is obvious that both biological activity and chemical stability are largely influenced by substituents at the thienoimidazole and the pyridine moieties.

Structure-Activity Relationships

The [3,4-d] isomers 2-8 of the two possible 2-(2picolylsulfinyl)thienoimidazole series showed strong inhibition of gastric acid secretion both in vitro and in vivo, whereas the [2,3-d] derivatives 9 were found to be less effective in all biological assays (Table III), probably due to their pronounced chemical stability.

The 4-methoxypyridine derivatives 2i and $9a^{15}$ directly allow comparison of the isomeric thienoimidazole series. Compound 2i has been characterized as an effective H⁺/K⁺-ATPase blocker, whereas the corresponding [2,3-d] isomer $9a^{15}$ and the dimethoxycarbonyl derivatives 9b and 9c were only weakly inhibitory.

Pyridine Substitution. Much effort has been spent to synthesize compounds 2-8 with unsubstituted thieno-[3,4-d]imidazole and substituted pyridine moieties.

In the biologically active methyl series 2b-f only the 6-substituted compound 2f showed little inhibitory effects. Probably the formation of the "active principle" is not possible due to steric hindrance. *m*-Halogen- and *m*methoxy-substituted compounds (3a, 3b, 4a and 2g, 2h, respectively) showed lower inhibitory activity both in vitro in the gastric gland preparation and in vivo in the rat models. However, the introduction of a 4-alkoxy substituent (2i and 2l) results in an increased biological activity, but in parallel the chemical stability declines. A 4-alkoxy substituent seems to favor the formation of the active metabolite by enhancing the nucleophilicity of the pyridine nitrogen, which might be expressed in terms of its basicity to be quantified more easily.

The main problem in measuring pK_a values of these compounds is that concentrations of protonated acid-labile species have to be determined. In analogy to the method described by the Hässle scientists,³⁷ pK_a values could be obtained by potentiometric pH measurements in aqueous HCl-DMSO solutions and extrapolation to zero time (Table IV). Compared to the parent compound 2a (pK_a = 3.05) the increased basicity of 2i ($pK_a = 4.16$) supports the direct relationship between basicity and biological activity as reported for the benzimidazole series.³⁶

If the electron-donating effect of the 4-alkoxy group is modified by an additional inductive electron-demanding substituent (e.g., alkoxy, fluoroalkoxy, or halogen) in the 3- or 5-position, highly active compounds with pronounced chemical stability are obtained. The decrease in pK_a values of about 0.5 reflects the enhanced chemical stability of 3c. 3m, and 4b as compared to 2i and 2l. The stabilizing effect of meta-positioned halogen atoms was also reported previously for the (4-aminopicolyl)benzimidazole series.³⁵ Of the possible 3-(5-)halogen derivatives, the 3-isomers 3c and 3m are the most potent. However, their bioavailability after id administration in pylorus-ligated rats³⁸ and Heidenhain-pouch dogs is limited (Table III). A similar behavior has also been shown for the analogous 3-tetrafluoroethoxy compound 7n. An additional methyl group in the remaining meta position (e.g., 3h, 4c, 4f, and 4g) decreases inhibitory activity, probably due to steric interaction, preventing conjugation between the 4-alkoxy

⁽³³⁾ De Cat, A.; Van Poucke, R.; Pollet, R.; Schots, P. Synthetic Applications of Difluorocarbene. Bull. Soc. Chim. Belg. 1965, 74, 270-280.

⁽³⁴⁾ Herling, A. W.; Bickel, M.; Lang, H.-J.; Weidmann, K.; Rösner, M.; Metzger, H.; Rippel, R.; Nimmesgern, H.; Scheunemann, K.-H. A Substituted Thieno[3,4-d]imidazole versus Substituted Benzimidazoles as H⁺,K⁺-ATPase Inhibitors. *Pharma*cology 1988, 36, 289–297.

⁽³⁵⁾ Ife, R. J.; Dyke, C. A.; Keeling, D. J.; Meenam, E.; Meeson, M. L.; Parsons, M. E.; Price, C. A.; Theobald, C. J.; Underwood, A. H. 2-[[(4-Amino-2-pyridyl)methyl]sulfinyl]benzimidazole H⁺/K⁺-ATPase Inhibitors. J. Med. Chem. 1989, 32, 1970-1977.

⁽³⁶⁾ Brändström, A.; Lindberg, P.; Junggren, U.; Wallmark, B. Structure-Activity Relationships of Substituted Benzimidazoles. Scand. J. Gastroenterol. Suppl. 1986, 21 (Suppl. 118), 54-56.

⁽³⁷⁾ Brändström, A.; Bergmann, N.-A.; Grundevik, I.; Johansson, S.; Tekenbergs-Hjelte, L.; Ohlson, K. Chemical Reactions of Omeprazole and Omeprazole Analogues. III. Protolytic Behavior of Compounds in the Omeprazole System. Acta. Chem. Scand. 1988, 43, 569-576.

⁽³⁸⁾ Inhibition values after ip administration, Table III; data from id administration not presented in detail.

Table I. Physical Properties of 2-[(2-Pyridylmethyl)thio]-1H-thienoimidazoles 18-25

$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		ום	D ²		D4	D 5	mathod	yield,	mp, °C ^c	formulat	analf
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	compa	- K -			<u> </u>		method	76*	(\$017)-	Tormula"	anal.
	188	н ч	H	н СН.	л Н	н	A A	35	126-129 (A) 320 (B)	$C_{11}H_9N_3S_2$ $C_2H_2C_1N_2S_4$	CHNS
	18c	Ĥ	Ĥ	H H	CH.	Ĥ	Ä	75	214 (C)	$C_{12}H_{13}C_{2}H_{3}S_{2}^{\mu}$ $C_{12}H_{12}C_{2}N_{3}S_{2}^{\mu}$	CHCINS
	18d	н	H	H	H	CH ₃	Α	37	218 (C)	$C_{12}H_{13}Br_2N_3S_2^h$	CHBrN
	18e	н	H	CH_3	H	CH_3	A	64	207 (D)	$C_{13}H_{15}Cl_2N_3S_2^{g}$	CHCINS
	18f'	H	H	H	H	H	A	41	230 (D)	$C_{12}H_{13}Cl_2N_3S_2^{s}$	CHNS
	18g	н ц	HU		H H	H OCH	B A	47 54	180 (E) 119-114 (F)	$C_{12}H_{11}N_{3}OS_{2}$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	181	Ĥ	Ĥ	Ĥ	OCH.	H	Â	42	172-174 (F) 172-175 (C)	$C_{12}I_{11}I_{3}OS_{2}$ $C_{12}H_{11}N_{2}OS_{2}$	CHNS
	18j	Ĥ	Ĥ	CH ₃	OCH ₃	Ĥ	Ā	59	174-177 (G)	$C_{13}H_{13}N_3OS_2$	CHNS
	18 k	н	н	CH_3	OCH ₃	CH_3	A	60	108–112 (G)	$C_{14}H_{15}N_3OS_2H_2O$	CHNS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	181	H	H	н	OC ₂ H ₅	H	A	47	206 (B)	$C_{13}H_{15}Cl_2N_3OS_2^{g}$	CHCINS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18m 19a	л н	н ч	н F	U- <i>n</i> -С ₄ п ₉ Н	пн	B	70 97	92 (E) Fessin (F)	$C_{15}H_{17}N_3OS_2$ $C_{14}H_{17}N_{15}OS_2$	CHNS
	19 b	Ĥ	Ĥ	Ĉ	H	Ĥ	Ă	24	141 (E)	$C_{11}H_{s}ClN_{s}S_{s}$	CHN
	19c	н	H	CI	OCH ₃	H	Α	82	156-157 (F)	$C_{12}H_{10}CIN_3OS_2$	CHCIN
	1 9 d	H	н	Cl	OC_2H_5	H	A	27	90 (F)	$C_{13}H_{12}CIN_3OS_2$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19e	H	H	Cl	$O-i-C_3H_7$	H	A	87	126-128 (A)	$C_{14}H_{14}CIN_3OS_2$	CHNS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	191	п	H U		$0-n-C_3H_7$	пн	A A	80 55	117-119 (A) 108-110 (F)	$C_{14}H_{14}CIN_3OS_2$	CHUIN
	19 b	Ĥ	Ĥ	či	OCH ₃	сн.	Â	92	149 (F)	$C_{13}H_{19}CIN_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	CHCIN
	1 9 i	H	н	ĊĪ	OCH ₂ C ₆ H ₅	H	A	36	159-160 (F)	C ₁₈ H ₁₄ ClN ₃ OS ₂	CHN
	19j	н	н	Cl	OC ₆ H ₅	H	A	75	168 (B)	$C_{17}H_{12}ClN_3OS_2$	CHN
	19k	H	H	Cl	OCH ₂ CF ₃	H	A	47	190 (F)	$C_{13}H_9ClF_3N_3OS_2$	CHFN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	191 19m	н	н ч	CI Br	OCH ₂ CF ₂ CF ₃	н	A A	50 62	114-116 (A) 168 (F)	$C_{14}H_9CIF_5N_3US_2$ $C_{14}H_{12}B_7N_2OS_2$	CHNS CHB-N
	20a	Ĥ	H.	H	H	Ĉi	Â	46	160 (F)	$C_{12}\Pi_{10}B\Pi_{3}OS_{2}$ $C_{11}H_{0}CIN_{0}S_{0}$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20b	Ĥ	Ĥ	H	OCH ₃	ĊÌ	A	21	135-137 (A)	$C_{12}H_{10}CIN_3OS_2$	CHNS
	20c	н	н	CH3	OCH ₃	Cl	A	52	160-162 (F)	$C_{13}H_{12}CIN_3OS_2$	CHN
206 H H CH OCH3 DF A 12 160 (P) C13H,BFN3OS2 CHNS 206 H H CH3 OCH3 F A 58 330 (B) C13H,BFN3OS2 CH 21a H H H OCH2CF2 H B 50 160 (A) C13H,BFN3OS2 CHN 21b H H H OCH2CF2CF3 H B 53 121 (A) C14H,FN3OS2 CHN 21c H H H OCH2CF2CF3 H B 53 121 (A) C14H,FN3OS2 CHN 21e H H H OCH2CF3 H B 55 145 (H) C14H,FN3OS2 CHN 21f H H OCH2CF3 H B 35 135 (H) C14H,FN3OS2 CHN 21g H H CH42CF3 CH3 B 38 169 (A) C14H,FN3OS2 CHN 21j H H CH42CF3 CH3 B 38 136 (H) C14H,FN3OS2	20d	H	H	H	OCH ₂ CF ₂ CF ₃	Cl	A	43	119-120 (F)	$C_{14}H_9ClF_5N_3OS_2$	CHFN
200HHCH3OCH3FA62300 (B)CH3CH3CH321aHHHOCH2CF3HB50160 (A)C13H12H39O52CH21aHHHOCH2CF3HB57120 (E)C13H12H39O52CH21bHHHOCH2CF3CF3HB57120 (E)C14H179O52CH21cHHHOCH2CF2CF3HB65117 (H)C14H179O52CHN21dHHHOCH2CF2CF3HB55116 (A)C14H2FNO52CHN21eHHHOCH2CF3HB35127 (-129 (F)C14H2FNO52CHN21fHHHOCH2CF3HB35127 (-129 (F)C14H2FNO52CHN21gHCH3OCH2CF3HB58136 (H)C14H2FNO52CHN21hHHCH3OCH2CF3HB58136 (H)C14H2FNO52CHN21hHHCH3OCH2CF3HB58136 (H)C14H2FNO52CHN21hHHCH3OCH2CF3HB58136 (H)C14H2FNO52CHN21hHHCH3OCH2CF3HB58136 (H)C14H2FNO52CHN21hHHCH3OCH2CF3HB58160 (H)C14H2FNO52<	20e 20f	н	H U	H CH.	OCH ₃	Br	A A	72 58	165 (F) 330 (B)	$C_{12}H_{10}BrN_3OS_2$	CHNS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201 20g	Ĥ	Ĥ	CH ₃	OCH.	F	Â	62	330 (B)	C ₁₃ H ₁₂ EH ₃ OS ₂ C ₁₃ H ₁₃ FN ₂ OS ₂	CH
	21a	Н	H	н	OCH ₂ CF ₃	Н	В	50	160 (A)	$C_{13}H_{10}F_3N_3OS_2$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21b	н	н	H	OCH ₂ CF ₂ CF ₂ H	н	В	57	120 (E)	$\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{F}_{4}\mathrm{N}_{3}\mathrm{OS}_{2}$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21c	H	H	H	OCH ₂ CF ₂ CF ₃	H	В	53	121 (A)	$C_{14}H_{10}F_5N_3OS_2$	CHN
217 H H H H OCH ₂ (CF ₂) ^{3,5,2,2,1} H B 35 127-129 (F) C ₁ (H ₁ F ₁ F ₁ N ₂ OS ₂ CHNS 218 H H CH ₃ OCH ₂ (CF ₃ H B 55 145 (H) C ₄ (H ₁ F ₂ F ₁ N ₃ OS ₂ CHN 219 H H H CH ₃ OCH ₂ (F ₂ OF ₃ H B 58 135 (H) C ₄ (H ₁ F ₂ F ₁ N ₃ OS ₂ CHN 211 H H CH ₃ OCH ₂ (CF ₂ OF ₃ H B 58 135 (H) C ₄ (H ₁ F ₂ F ₁ N ₃ OS ₂ CHN 211 H H CH ₃ OCH ₂ (CF ₂ OF ₃ H B 24 140 (H) C ₄ (H ₁ F ₂ F ₁ N ₃ OS ₂ CHN 212 H H H CH ₃ OCH ₂ (CF ₂ OCH ₃ H B 70 181 (E) C ₄ (H ₁ F ₂ F ₁ N ₃ OS ₂ CHN 222 H H H H CH ₃ OCH ₂ (CF ₂ OCH ₂ O H B 70 181 (E) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 224 H H H A 2,4-F ₂ C ₄ H ₂ CH ₂ O H B 76 141 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 226 H H H H 3,5-F ₂ C ₄ F ₄ CH ₂ O H B 48 150-161 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 226 H H H H 3,5-C[2,4]CH ₂ O H B 60 156-158 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 226 H H H H 3,5-C[2,4]CH ₂ O H B 60 156-158 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 226 H H H H 3,5-C[2,4]CH ₂ O H B 59 143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN 227 H H H H 3,5-C[2,4]CH ₂ O H B 59 143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 228 H H H H 4,4-CF ₃ C ₄ H ₄ CH ₂ O H B 59 143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 229 H H H H 4,4-CF ₃ C ₄ H ₄ CH ₂ O H B 59 143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 221 H H H H 4,4-CF ₃ C ₄ H ₄ CH ₂ O H B 59 1143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 221 H H H H 4,4-CF ₃ C ₄ H ₄ CH ₂ O H B 59 1143 (F) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 221 H H H H 4,4-CF ₃ C ₄ H ₄ O H B 73 159-161 (E) C ₄ (H ₁ F ₁ F ₁ N ₃ OS ₂ CHN) 221 H H H H 4,4-CF ₄ C ₄ H ₀ O H B 73 129-131 (E) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 222 H H H H H 4,4-CF ₄ C ₄ H ₄ O H B 73 129-131 (E) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 234 H H OCH ₃ OCH ₃ CH ₃ H B 54 1447 (F) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 235 H H H OCH ₃ OCH ₄ CF ₃ H B 85 1133-139 (F) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 236 H H OCH ₄ OCH ₄ CF ₄ CH ₄ O H B 85 1133-135 (F) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 236 H H OCH ₅ OCH ₄ CF ₅ H H B 77 1135-137 (F) C ₄ (H ₁ F ₁ N ₃ OS ₂ CHN) 236 H H OCH ₅ OCH ₅ CF ₅ H H B 50 1133-135 (F) C ₄	210 21e	н	л Н	н	$OCH_2 CF_2 CF_3 OCH_3 (CF_3) CF_3 OCH_3 (CF_3) CF_3 OCH_3 (CF_3) CF_3 OCH_3 (CF_3) CF_3 OCH_3 $	н	B	35	105 (H)	$C_{15} \Pi_{10} \Gamma_7 N_3 OS_2$ $C_{14} H_{12} \Gamma_7 N_3 OS_2$	CHNS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21f	Ĥ	Ĥ	Ĥ	$OCH_2(OF_2)_2$	H	Б́В	35	127-129 (F)	$C_{14}H_9F_6N_3OS_2$	CHNS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21g	н	н	CH_3	OCH ₂ CF ₃	Н	В	55	145 (H)	$C_{14}H_{12}F_3N_3OS_2$	CHN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21h	H	H	H	OCH ₂ CF ₃	CH_3	B	93	169 (A)	$C_{14}H_{12}F_3N_3OS_2$	CHN
21)nn $Orag<$ $OragOrg2Crg2CrgnnnnD24140 (n)C_{16}h_{12}r_{13}c_{30}OS_{2}CHN22aHHH4FC_{4}H_{2}C_{4}H_{2}OHB76141 (F)C_{16}H_{13}r_{3}N_{3}OS_{2}CHN22bHHH44FC_{4}H_{4}CL_{2}OHB76141 (F)C_{16}H_{13}r_{3}N_{3}OS_{2}CHN22cHHH24FC_{4}H_{4}CH_{2}OHB28100-161 (F)C_{16}H_{13}r_{3}N_{3}OS_{2}CHN22eHHH44CC_{6}H_{4}CH_{2}OHB60156-158 (F)C_{16}H_{13}c_{1}N_{3}OS_{2}CHN22gHHH35CC_{7}G_{4}H_{2}CH_{2}OHB54178-179 (F)C_{16}H_{13}c_{1}N_{3}OS_{2}CHN22gHHH335CC_{14}G_{14} (F)C_{16}H_{12}r_{3}N_{3}OS_{2}CHN22gHHH335163 (F)C_{16}H_{12}r_{3}N_{3}OS_{2}CHN22gHHH335CC_{13}r_{14} (H)C_{16}r_{14}r_{14}r_{3}N_{3}OS_{2}CHN22gHHH335183 (F)C_{16}r_{14}r_{16}r_{3}N_{3}OS_{2}CHN22gHHH33CC_{17}r_{14}r_{16}r_{3}N_{3}OS_{2}CHN<$	211	HU	H		$OCH_2CF_2CF_3$	HU	В	58	135 (H)	$C_{15}H_{12}F_5N_3OS_2$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21) 22a	Ĥ	Ĥ	H H	$C_{a}H_{a}CH_{a}O$	Ĥ	B	70	140 (H) 181 (E)	$C_{16}H_{12}F_{7}N_{3}OS_{2}$ $C_{16}H_{12}F_{7}N_{3}OS_{2}$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22b	Ĥ	Ĥ	Ĥ	4-FC ₆ H ₄ CH ₂ O	H	Ē	76	141 (F)	$C_{18}H_{14}FN_3OS_2$	CHNS
22dHHH3,5-F2_CH3CH2OHB48159-161 (F) $C_{19}H_{13}F_2N_3OS_2$ CHN22eHHH4-ClC ₆ H ₄ CH2OHB60156-158 (F) $C_{19}H_{13}G_2N_3OS_2$ CHN22fHHH3,5-Cl2_CH3CH2OHB59143 (F) $C_{19}H_{13}G_2N_3OS_2$ CHN22gHHH3,5-Cl7_9/2C_4H3CH2OHB55187 (A) $C_{20}H_3F_4N_3OS_2$ CHN22hHHH3,5-(CF_9/2C_4H_3CH2OHB55187 (A) $C_{20}H_3F_4N_3OS_2$ CHN22iHHH3,5-(CF_9/2C_4H_3CH2OHB25154-155 (F) $C_{11}H_{12}F_3N_3OS_2$ CHN22iHHH4-CF_4C_4HOHB73129-131 (E) $C_{17}H_{11}F_2N_3OS_2$ CHN22kHHH2,4-F_2C_6H_3OHB73129-131 (E) $C_{17}H_{11}F_2N_3OS_2$ CHN22mHHH4-ClC_6H_4OHB83161-163 (E) $C_{17}H_{11}F_2N_3OS_2$ CHN23aHHOCH3OCH2CF_2CF_3HB27142 (F) $C_{13}H_{13}N_3O_2S_2$ CHN23bHOCH3OCH2CF2CF_3HB54147-148 (F) $C_{14}H_{12}F_3N_3OS_2$ CHN23cHHOCH3OCH2CF2CF_3HB55137-142 (F) $C_{14}H_{12}F_3N_3OS_2$ CHN23c<	22c	Н	н	н	$2,4$ - $F_2C_6H_3CH_2O$	н	в	28	100-161 (F)	$C_{18}H_{13}F_2N_3OS_2$	CHN
226nnn4-Cl_2hl_Cl_2OnB60156-158 (F) $C_{16}H_{14}ClN_3OS_2$ CHN22fHHH3,5-Cl_2h_3CH_2OHB54178-179 (F) $C_{16}H_{13}S_1OS_2$ CHCN22gHHH4-CF_3C_4H_2CH_2OHB55187 (A) $C_{20}H_{13}F_4N_3OS_2$ CHN22hHHHH3,5-Cl_2h_2C_6H_3OHB55187 (A) $C_{20}H_{13}F_4N_3OS_2$ CHN22iHHH4-FC_6H_4OHB73159-161 (E) $C_{17}H_{12}F_3N_3OS_2$ CHN22kHHH2,4-F_2C_6H_3OHB73129-131 (E) $C_{17}H_{12}F_3N_3OS_2$ CHN22kHHH4-Cl_2C_6H_3OHB83161-163 (E) $C_{17}H_{12}ClN_3OS_2$ CHN22mHHH3,4-Cl_2C_6H_3OHB83161-163 (E) $C_{17}H_{11}Cl_N_3OS_2$ CHN23aHHOCH_3OCH_2CF_3HB54147-148 (F) $C_{14}H_{12}F_3N_3O_2S_2$ CHN23bHHOCH_3OCH_2CF_2CF_3HB54147-148 (F) $C_{14}H_{12}F_4N_3O_2S_2$ CHN23cHHOCH_3OCH_2CF_2CF_3HB50133-135 (F) $C_{16}H_{12}F_4N_3O_2S_2$ CHN23dHHOCH_3OCH_2CF_2CF_3HB50133-135 (F) $C_{16}H_{12}F_4N_3O_2S_2$	22d	H	H	H	$3,5-F_2C_6H_3CH_2O$	H	B	48	159–161 (F)	$C_{18}H_{13}F_2N_3OS_2$	CHN
224111111 $0,0^{-1},$	22e 99 f	пн	н ц	л ч	4-CIC6H4CH2U 3.5-CLC.H.CH.O	н	B	60 54	100-108 (F) 178-170 (F)	$C_{18}H_{14}CIN_3US_2$	CHON
22hHHH $3,5-(CF_3)^2 C_8 H_3 CH_2 O$ HB 55 $187 (A)$ $C_{20} H_{13} F_8 N_3 O S_2$ CHNS22iHHH $3-CF_3 C_6 H_4 O$ HB 25 $154-155 (F)$ $C_{18} H_{12} F_3 N_3 O S_2$ CHN22jHHH $4-FC_6 H_4 O$ HB73 $159-161 (E)$ $C_{17} H_{12} F_3 N_3 O S_2$ CHNS22kHHH $2,4-F_5 C_8 H_3 O$ HB73 $129-131 (E)$ $C_{17} H_{12} F_3 N_3 O S_2$ CHNS22kHHH $2,4-F_5 C_6 H_3 O$ HB73 $129-131 (E)$ $C_{17} H_{12} F_3 N_3 O S_2$ CHNS22kHHH $4-CI C_6 H_4 O$ HB83 $161-163 (E)$ $C_{17} H_{12} CI_3 O S_2$ CHN22mHHH $4-CI C_6 H_3 O$ HB83 $161-163 (E)$ $C_{17} H_{12} CI_3 O S_2$ CHN23aHHOCH_3OCH_3HB 27 $142 (F)$ $C_{13} H_{13} N_3 O S_2$ CHN23bHHOCH_4OCH_2 CF_2 CF_3 HHB 54 $147-148 (F)$ $C_{14} H_{12} F_3 N_3 O S_2$ CHN23cHHOCH_3OCH_2 CF_2 CF_3 HHB 65 $139 (H)$ $C_{16} H_{12} F_4 N_3 O S_2$ CHN23dHHOCH_3OCH_2 (CF_2) CF_3 HB 50 $133-135 (F)$ $C_{16} H_{12} F_4 N_3 O S_2$ CHN23fHHOCH_3	22g	Ĥ	Ĥ	Ĥ	4-CF ₂ C _e H ₄ CH ₂ O	Ĥ	B	59	143 (F)	$C_{19}H_{13}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{3}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	CHN
22iHHH $3 \cdot CF_3 C_6 H_4 O$ HB25 $154 - 155$ (F) $C_{18} H_{12} F_3 N_3 OS_2$ CHN22jHHH $4 + FC_4 H_4 O$ HB73 $159 - 161$ (E) $C_{17} H_{12} F_3 N_3 OS_2$ CHNS22kHHH $2, 4 - F_2 C_6 H_3 O$ HB73 $129 - 131$ (E) $C_{17} H_{12} F_3 N_3 OS_2$ CHN22kHHH $4 - CIC_6 H_4 O$ HB83 $151 \cdot (F)$ $C_{17} H_{11} F_2 N_3 OS_2$ CHN22mHHH $4 - CIC_6 H_4 O$ HB88 $151 \cdot (F)$ $C_{17} H_{11} C_1 N_3 OS_2$ CHN23aHHOCH ₃ OCH ₃ HB27 $142 \cdot (F)$ $C_{13} H_{13} N_3 O_2 S_2$ CHN23bHHOCH ₃ OCH ₂ CF ₃ HB 54 $147 - 148$ (F) $C_{14} H_{12} F_3 N_3 O_2 S_2$ CHN23cHHOCH ₃ OCH ₂ CF ₂ CF ₃ HB 55 $139 \cdot (H)$ $C_{16} H_{12} F_5 N_3 O_2 S_2$ CHN23dHHOCH ₃ OCH ₂ CF ₂ CF ₃ HB 65 $139 \cdot (H)$ $C_{16} H_{12} F_1 N_3 O_2 S_2$ CHN23eHHOCH ₃ OCH ₂ CF ₂ CF ₃ HB 55 $133 - 135$ (F) $C_{16} H_{12} F_1 N_3 O_2 S_2$ CHN23fHHOCH ₃ OCH ₂ (CF ₂) CF ₃ HB 51 $138 - 139 \cdot (F)$ $C_{21} H_{12} F_1 N_3 O_2 S_2$ CHN23f<	22h	н	Н	н	3,5-(CF ₃) ₂ C ₆ H ₃ CH ₂ O	н	В	55	187 (A)	$C_{20}H_{13}F_6N_3OS_2$	CHNS
ZzjnHH4-rC ₄ T ₄ QHB73159-161 (E) $C_{17}H_{12}FN_3OS_2$ CHNS22kHHH2,4-r ₂ C ₆ H ₃ OHB73129-131 (E) $C_{17}H_{11}F_2N_3OS_2$ CHNS22kHHH4-ClC ₆ H ₄ OHB88151 (F) $C_{17}H_{11}C_1N_3OS_2$ CHN22mHHH3,4-Cl ₂ C ₆ H ₃ OHB88161-163 (E) $C_{17}H_{11}C_1N_3OS_2$ CHCIN23aHHOCH ₃ OCH ₃ HB27142 (F) $C_{13}H_{13}N_3O_2S_2$ CHN23bHHOCH ₃ OCH ₂ CF ₃ HB54147-148 (F) $C_{14}H_{12}F_3N_3O_2S_2$ CHN23cHHOCH ₃ OCH ₂ CF ₂ CF ₃ HHB65139 (H) $C_{16}H_{13}F_4N_3O_2S_2$ CHN23dHHOCH ₃ OCH ₂ (CF ₂)CF ₃ HB65139 (H) $C_{16}H_{12}F_5N_3O_2S_2$ CHN23eHHOCH ₃ OCH ₂ (CF ₂)CF ₃ HB50133-135 (F) $C_{16}H_{12}F_7N_3O_2S_2$ CHN23fHHOCH ₃ OCH ₂ (CF ₂)CF ₃ HB51138-139 (F) $C_{20}H_{16}F_3N_3O_2S_2$ CHN23gHHOCH ₃ 4-CF ₃ C ₆ H ₄ CH ₂ OHB51138-139 (F) $C_{21}H_{16}F_6N_3O_2S_2$ CHN23bHHOCH ₃ 4-CF ₃ C ₆ H ₄ CH ₂ OHB51138-	22i	H	H	H	3-CF ₃ C ₆ H ₄ O	H	B	25	154-155 (F)	$C_{18}H_{12}F_3N_3OS_2$	CHN
221HHH $4-CI_2C_9H_3O$ HB73 $125-131$ (E) $C_{17}H_{11}F_2N_3OS_2$ CHN221HHH $4-CIC_6H_4O$ HB88151 (F) $C_{17}H_{11}C_2N_3OS_2$ CHN22mHHH $3,4-CI_2C_9H_3O$ HB83161-163 (E) $C_{17}H_{11}C_2N_3OS_2$ CHN23aHHOCH_3OCH_3HB27142 (F) $C_{13}H_{13}N_3O_2S_2$ CHN23bHHOCH_3OCH_2CF_3HB54147-148 (F) $C_{14}H_{12}F_3N_3O_2S_2$ CHN23cHHOCH_3OCH_2CF_2CF_3HHB65139 (H) $C_{16}H_{19}F_4N_3O_2S_2$ CHN23dHHOCH_3OCH_2CF_2CF_3HB65139 (H) $C_{16}H_{12}F_5N_3O_2S_2$ CHN23eHHOCH_3OCH_2(CF_2)_2CF_3HB50133-135 (F) $C_{16}H_{12}F_7N_3O_2S_2$ CHN23fHHOCH_3OCH_2(CF_2)_2CF_3HB51138-139 (F) $C_{20}H_{18}F_3N_3O_2S_2$ CHN23gHHOCH_3 $4-CF_3C_6H_4CH_2O$ HB51138-137 (F) $C_{21}H_{18}F_6N_3O_2S_2$ CHN23hHHOCH_3 $3,5-(CF_3)_2C_6H_3CH_2O$ HB51138-137 (F) $C_{21}H_{16}F_6N_3O_2S_2$ CHN23gHHOCH_3 $3,5-(CF_3)_2C_6H_3CH_2O$ HB51138-137	22j 221-	н ч	HU	H H	4-ГU ₆ Н ₄ U 2.4-Е С Н О	н ч	B	73	159-161 (E) 190-191 (E)	$C_{17}H_{12}FN_3OS_2$	CHNS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22k 22l	Ĥ	Ĥ	Ĥ	4-ClCeH10	Ĥ	B	88	151 (F)	$C_{17} H_{19} C_{17} H_{19} C_{17} H_{19} C_{17} H_{19} C_{17} H_{19} C_{17} H_{19} C_{17} H_{19} $	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 m	н	н	H	3,4-Cl ₂ C ₆ H ₃ O	н	B	83	161–163 (E)	$C_{17}H_{11}Cl_2N_3OS_2$	CHCIN
230RHOCH ₃ OCH ₃ CF ₃ HB54147-148 (F) $C_{14}H_{12}F_3N_3O_2S_2$ CHN23cHHOCH ₃ CF ₂ CF ₂ H HB77127-129 (F) $C_{16}H_{13}F_4N_3O_2S_2$ CHN23dHHOCH ₃ CF ₂ CF ₃ HB65139 (H) $C_{15}H_{12}F_5N_3O_2S_2$ CHN23eHHOCH ₃ OCH ₂ (CF ₂) ₂ CF ₃ HB50133-135 (F) $C_{16}H_{12}F_3N_3O_2S_2$ CHN23fHHOCH ₃ OCH ₂ (CF ₂) ₂ CF ₃ HB50133-135 (F) $C_{14}H_{12}F_3N_3O_2S_2$ CHN23fHHOCH ₃ OCH ₂ (CF ₂) ₂ CF ₃ HB73110 (H) $C_{17}H_{13}F_8N_3O_2S_2$ CHN23gHHOCH ₃ 3.5 -(CF ₃) ₂ CF ₄ H HB51138-139 (F) C ₂₀ H ₁₆ F ₃ N_3O_2S_2 CHN23gHHOCH ₃ 3.5 -(CF ₃) ₂ C ₆ H ₃ CH ₂ O HB77135-137 (F) C ₂₁ H ₁₆ F ₆ N_3O_2S_2 CHN23hHHOCH ₃ 3.5 -(CF ₃) ₂ C ₆ H ₃ CH ₂ O HB55147-149 (F) C ₁₉ H ₁₉ FN ₃ O_2S_2 CHN23iHHOCH ₂ CF ₃ OCH ₂ CF ₃ HB51135 (H) C ₁₅ H ₁₁ F ₆ N ₃ O_2S_2 CHN23iHHOCH ₂ CF	23a	H	H	OCH ₃	OCH ₃	H	B	27	142 (F)	$C_{13}H_{13}N_{3}O_{2}S_{2}$	CHN
23dH0 CH30 CH2/2 1 2CF 3HB7/112/-123 (F)C16H347 1 (M30 1 30 2 2C HFN23dHHO CH3O CH2/CF2 CF3HB65139 (H)C16H137 1 M30 2 S2CHFN23eHHO CH3O CH2/CF2 CF3HB50133-135 (F)C16H137 1 M30 2 S2CHFN23fHHO CH3O CH2/CF3 1 2C 2 CF2 HHB73110 (H)C17 H13 1 M30 2 S2CHFN23gHHO CH3O CH2/CF3 2 C6H4 2 CPHB51138-139 (F)C20 H18 2 M30 2 S2CHN23gHHO CH33,5-(CF3) 2 C6H4 2 CPHB51138-139 (F)C20 H18 2 M30 2 S2CHN23bHHO CH33,5-(CF3) 2 C6H4 2 CPHB77135-137 (F)C21 H18 2 M30 2 S2CHN23iHHO CH33,5-(CF3) 2 C6H4 2 CPHB55147-149 (F)C19 H18 2 M30 2 S2CHN23iHHO CH3 2 CF3HB41145 (K)C15 H118 2 M30 2 S2CHN23kHHO CH2 CF3HHB50135 (H)C18 H118 2 M30 2 S2CHN23lHHO CH5 2 CF3HB31145 (H)C18 H118 2 M30 2 S2CHN23lHHO	23b 23a	н н	H	OCH3		HH	B	54 77	147-148 (F) 197-190 (F)	$C_{14}H_{12}F_3N_3O_2S_2$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23C 23d	Ĥ	H	OCH ₃	OCH ₂ CF ₂ CF ₂ CF ₂ CF	Ĥ	B	65	127-129 (F) 139 (H)	$C_{15}H_{13}F_4N_3O_2S_2$ $C_{17}H_{10}F_5N_5O_2S_5$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23e	H	Ĥ	OCH ₃	OCH ₂ (CF ₂) ₂ CF ₃	н	B	50	133-135 (F)	$C_{16}H_{12}F_7N_3O_2S_2$	CHFN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23f	H	н	OCH ₃	OCH ₂ (CF ₂) ₃ CF ₂ H	H	B	73	110 (H)	$C_{17}H_{13}F_8N_3O_2S_2$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23g 22h	н н	H	OCH ₃		H	B	51 77	138-139 (F)	$C_{20}H_{16}F_3N_3O_2S_2$	CHNS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23i	Ĥ	Ĥ	OCH.	4-FC_H.CH_0	Ĥ	B	55	147-149 (F)	C ₂₁ H ₁₅ F 6 ¹ V ₃ O ₂ O ₂ C ₁₀ H ₁₆ FN ₂ O ₂ S ₂	CHNS
23k H H OCH ₂ CF ₃ H H B 50 135 (H) $C_{13}H_{10}F_{3}N_{3}OS_{2}$ CHN 23l H H OCHF ₃ H H B 32 103 (H) $C_{13}H_{10}F_{3}N_{3}OS_{2}$ CHN	23j	н	н	OCH ₂ CF ₃	OCH ₂ CF ₃	H	B	41	145 (K)	$C_{15}H_{11}F_6N_3O_2S_2$	CHN
Z31 FL H UCHF2 H H B 32 103 (H) C12HaF2N2OS2 CHN	23k	H	H	OCH ₂ CF ₃	H	H	B	50	135 (H)	$C_{13}H_{10}F_{3}N_{3}OS_{2}$	CHN
	231 22m	н	H U	UCHF ₂	H OCHF	H H	B	32 96	103 (H)	$C_{12}H_9F_2N_3OS_2$	CHN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23n	Ĥ	Ĥ	OCF ₂ CF ₂ H	OCH ₃	Ĥ	B	20 86	resin (E)	$C_{12}I_{39}I_{2}I_{3}OS_{2}$ $C_{12}H_{11}F_{2}N_{2}O_{2}S_{2}$	CHN
24a CH_3 CH_3 H H H H H A 52 330 (C) $C_{1_3}H_{1_5}C_{1_2}N_3S_2^{*2}$ CHCINS	24a	\mathbf{CH}_3	CH ₃	Η 1 1	H	н	A	52	330 (C)	C ₁₃ H ₁₅ Cl ₂ N ₃ S ₂ ⁴	CHCINS

Table I (C	ontinued)
------------	-----------

compda	\mathbb{R}^1	R ²	R ³	R4	R⁵	method	yield, % ^b	mp, °C ^c (solv) ^d	formula ^e	anal. ^f
24b	CH ₃	CH ₃	H	Н	CH_3	A	77	250-255 (B)	$C_{14}H_{17}Cl_2N_3S_2^{d}$	CHCINS
24c	CH ₃	CH_3	н	OCH ₃	НČ	Α	70	217-222 (C)	$C_{14}H_{17}Cl_2N_3OS_2^{s}$	CHN
24d	CH ₃	CH ₃	Cl	$0-i-C_3H_7$	н	Α	82	190–196 (E)	$C_{16}H_{20}Cl_3N_3OS_2^{g}$	CHNS
24e	CH ₃	CH_3	н	OCH ₂ CF ₃	н	Α	74	246-250 (B)	C ₁₅ H ₁₆ Cl ₂ F ₃ N ₃ OS ₂ ^g	CHN
24f	CH ₃	CH ₃	н	OCH ₂ CF ₂ CF ₃	н	Α	77	330 (C)	$C_{16}H_{16}Cl_2F_5N_3OS_2^{g}$	CHN
24g	CH ₃	CH ₃	н	$OCH_2(CF_2)_2CF_3$	н	Α	55	215–220 (D)	$C_{17}H_{16}Cl_2F_7N_3OS_2^{g}$	CHN
24h	COCH ₃	н	н	Н	CH_3	Α	30	288 (I)	$C_{14}H_{15}Cl_2N_3OS_2^{g}$	CHN
24i	COCH ₃	н	н	OCH ₂ CF ₃	Н	Α	33	169–175 (A)	$C_{15}H_{12}F_3N_3O_2S_2$	CHNS
24j	CO ₂ CH ₃	н	н	OCH ₃	н	в	39	156-160 (E)	$C_{14}H_{13}N_3O_3S_2$	CHNS
24k	$C_6 H_5$	н	н	Н	н	в	59	153–157 (I)	$C_{17}H_{13}N_3S_2$	CHN
241	C_6H_5	н	Н	OCH ₃	н	Α	56	182–185 (J)	$C_{18}H_{15}N_3OS_2$	CHN
24m	C_6H_5	н	CH_3	OCH ₃	CH_3	Α	49	192-195 (J)	$C_{20}H_{19}N_3OS_2$	CHN
24n	4-CH ₃ OC ₆ H ₄	н	Н	OCH ₃	H	в	71	170–173 (K)	$C_{19}H_{17}N_3O_2S_2$	CHN
24o	4-CH ₃ OC ₆ H ₄	н	CH_3	OCH ₃	CH_3	Α	25	151-154 (E)	$C_{21}H_{21}N_3O_2S_2$	CHNS
25a	н	н	н	OCH ₃	Н	в	j	j	$C_{12}H_{11}N_3OS_2$	j
25b	CO ₂ CH ₃	CO ₂ CH ₃	н	H	н	в	68	115-117 (I)	$C_{15}H_{13}N_{3}O_{4}S_{2}$	CHN
25c	CO ₂ CH ₃	CO ₂ CH ₃	н	OCH ₃	н	В	65	156-159 (I)	$C_{16}H_{15}N_3O_5S_2$	CHN

 ${}^{a}R^{6} = H$ in all compounds except 18f. b See Experimental Section. Compounds were prepared by methods A and B. ${}^{c}All$ compounds decompose on mp determination. d Recrystallization solvent: A = diisopropyl ether, B = acetone, C = ethanol, D = acetone/ethanol, E = ethyl acetate, F = diethyl ether, G = water, H = ethyl acetate/cyclohexane, I = 2-propanol, J = acetonitrile, K = dichloromethane. e Free bases, unless otherwise indicated. f Elemental analyses were within $\pm 0.4\%$ of the calculated values. e As dihydrochloride. h As dihydrobromide. ${}^{i}R^{6}$ = CH₃. j See ref 15.

substituent and the pyridine ring.

Pharmacodynamic Behavior

4-Alkoxy, 4-phenoxy, and 4-benzyloxy groups, which combine lipophilicity and electron-demanding properties, result in compounds (series 5 and 6) with strong inhibitory activity. In the 4-fluoroalkoxy series 5, the (heptafluorobutyl)oxy compound 5d emerges as the most interesting compound, showing strong inhibitory effects in all biological assays used and a favorable chemical stability in buffered solution. Introducing the hexafluoroisopropoxy group (5f) surprisingly reduces biological activity.

All halogen- and trifluoromethyl-substituted benzyloxy derivatives 6b-h are strong inhibitors and show a good correlation of in vivo data and in vitro inhibitory effects in rabbit gastric glands. Compounds 6d and 6g are the most potent compounds in this series. However, chemical stability data favor the species with the strongest electron-withdrawing 4-substituent (6h). In the phenoxy series the 4-fluoro and 4-chloro derivatives 6j and 6l, with an omeprazole-like inhibitory activity, are most interesting.

The 3.4-dimethoxy compound 7a, like 2i, is a strongly active inhibitor, but it suffers from its limited chemical stability. In analogy to the 4-fluoroalkoxy compounds 5, replacement of the 4-methoxy group by a 4-fluoroalkoxy group increases chemical stability, while strong biological activity is maintained.³⁹ Compounds 7b and 7d appear to be the most interesting compounds in this series, whereas the limited availability of 7c after id administration in the Heidenhain-pouch dog is prohibitory. As in the series 6, the aromatic analogues 7g-i are highly inhibitory. Surprisingly, the combination of a 4-fluoroalkoxy group with a 3- or 5-positioned halogen atom (3k, 31, or 4d) or an additional fluoroalkoxy group (7j) results in compounds showing weaker inhibitory effects on gastric acid secretion. As in the case of 5f, it might be assumed that the nucleophilicity of the pyridine moiety is too moderate to generate the active intermediates.

Thienoimidazole Substitution. In most cases in the thieno[3,4-d]imidazole series, dimethyl substitution resulted in biologically less active compounds (e.g., 2d vs 8b and 5d vs 8g). Compared with the parent compound 2a, phenyl-, methoxyphenyl-, acetyl-, and alkoxycarbonyl-substituted compounds (8h-o) showed decreased inhibitory activity (Table III).

Seven compounds have been selected for more detailed pharmacological studies. In addition to the parent compound 2a, the 5-methylpyridine derivative 2d and the chloro-substituted species 3c and 4b, the (heptafluorobutyl)oxy compound saviprazole (5d, HOE 731) and the 3-methoxypyridines 7b and 7d have been further characterized in the Heidenhain-pouch dog (Table V). ED_{50} values show that all compounds tested are equipotent to omeprazole after iv administration. Compounds 5d and 7b have also found to be equipotent after id application. For 4b there is a tendency to be less effective, although large confidence limits prevent further interpretation. With the additional criterion of chemical stability in mind, we focused our interest on 5d (saviprazole, HOE 731), 7b, and 7d.

There are close relationships between the thienoimidazoles and omeprazole concerning the site of action $(H^+/K^+-ATPase)$ and antisecretory efficacy. However, there are significant pharmacodynamic differences in dogs and rats. The dose-response relationships for 5d, 7b, and 7d differ from that of omeprazole at high doses, although they have similar ED₅₀ values. A further increase of the 70–90% inhibitory dose did not cause a further increase in inhibition for the thienoimidazoles contrary to that for omeprazole.

When the inhibitory effects of saviprazole and omeprazole at 1 mg/kg iv were compared, they showed significant differences (Figure 1). Saviprazole caused an immediate complete inhibition of histamine-induced acid output like that of omeprazole. This complete inhibition, however, lasted only for about 30 min. Then acid output was partially reactivated to about a 90% inhibition level. In contrast, omeprazole caused a nearly complete inhibition over the whole observation period of 4.5 h.⁴⁰ This phenomenon is even more pronounced in the case of the 3-methoxypyridine derivatives 7b and 7d, leading to maximal inhibition levels of 70% and 80%, respectively (Figure 1).

⁽³⁹⁾ See the related benzimidazole compounds: (a) Takeda, European Patent Application EP 0 208 452, 1987. (b) Byk-Gulden Lomberg Chemische Fabrik GmbH EP 0 166 287, 1986.

^{(40) (}a) Herling, A. W.; Bickel, M.; Lang, H.-J.; Scheunemann, K.-H.; Weidmann, K.; Nimmesgern, H. Substituted Thieno-[3,4-d]imidazoles - A New Class of H⁺,K⁺-ATPase Inhibitors. Gastroenterology 1989, 96, A206. (b) Herling, A. W.; Lang, H.-J.; Scheunemann, K.-H.; Weidmann, K.; Metzger, H. HOE 731, A Novel H⁺/K⁺-ATPase Inhibitor with a Different Inhibitory Profile Compared to Omeprazole. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989, 339 (Suppl.), R73.

Table II. Physical Properties of 2-[(2-Pyridylmethyl)sulfinyl]-1H-thienoimidazoles 2-9^a

compd ^b	R1	R ²	R ³	R4	R ⁵	yield, %	$\frac{\text{mp, }^{\circ}\text{C}^{c}}{(\text{solv})^{d}}$	chemical stability ^e	formula	anal. [/]
2a	н	Н	Н	Н	Н	63	148-149 (A)	0	$C_{11}H_9N_3OS_2$	CHNS
2b	H	н	CH3	H	H	74	155 (A)	0	$C_{12}H_{11}N_3OS_2$	CHNS
2C 2d	н ц	HU	H	UH3 H	H CH	47	138 (J) 120-122 (A)	0	$C_{12}H_{11}N_3OS_2$	CHNS
20 2e	н	н	CH.	Н		70	120-123 (R) 156 (A)	0	$C_{12}H_{11}N_3OS_2$ $C_{12}H_{12}N_2OS_2$	CHNS
2f ^g	H	Ĥ	H	Ĥ	H	63	125 (B)	ŏ	$C_{12}H_{11}N_3OS_2$	CHNS
2g	н	н	OCH₃	Н	н	68	85-90 (B)	++	$C_{12}H_{11}N_{3}O_{2}S_{2}$	CHNS
2h	н	Н	н	H	OCH3	80	152-154 (B)	++	$C_{12}H_{11}N_3O_2S_2$	CHNS
21	н	H	H	OCH ₃	н	50	142-144(1)	-	$C_{12}H_{11}N_3O_2S_2$	CHNS
2) 21-	п	н ц	CH ₃	OCH.	п Сн.	60 34	140 (1) 190 (T)	_	$C_{13}H_{13}N_{3}O_{2}S_{2}$	CHNS
21	Ĥ	Ĥ	H H	OC ₂ H ₅	H	30	132-135 (C)	_	$C_{14}\Pi_{15}\Pi_{3}O_{2}O_{2}O_{2}$ $C_{16}\Pi_{16}\Pi_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	CHNS
2 m	H	H	H	0-n-C ₄ H ₉	н	48	128 (K)	-	$C_{15}H_{17}N_{3}O_{2}S_{2}$	CHNS
3a	Н	н	F	н	н	39	145 (C)	++	C ₁₁ H ₈ FN ₃ OS ₂	CHFNS
3b	H	н	Cl	H	H	82	145 (C)	++	$C_{11}H_8ClN_3OS_2$	CHCINS
3c	H	H	Cl	OCH ₃	н	76	160 (B)	++	$C_{12}H_{10}CIN_3O_2S_2$	CHCINS
30	머머	н ц		O_2H_5	н	07 03	160 (B) 140 (B)	++	$C_{13}H_{12}CIN_3O_2S_2$	CHUINS
3f	Ĥ	Ĥ		$0-n-C_{0}H_{7}$	н	55 72	134 (F)	++`	$C_{14}\Pi_{14}C\Pi_{3}O_{2}S_{2}$ $C_{14}\Pi_{14}C\Pi_{3}O_{2}S_{2}$	CHNS
3g	Ĥ	Ĥ	či	O(CH ₂) ₂ OCH ₃	н	47	124 (E)	++	$C_{14}H_{14}CIN_3O_3S_2$	CHNS
3 h	н	н	Cl	OCH3	CH_3	79	106 (B)	++	$C_{13}H_{12}CIN_3O_2S_2$	CHCINS
3 i	н	H	Cl	OCH ₂ C ₆ H ₅	н	80	139–149 (B)	++	$C_{18}H_{14}ClN_3O_2S_2$	CHNS
3j	H	H	CI	OC ₆ H ₅	H	51	144–147 (I)	++	$C_{17}H_{12}CIN_3O_2S_2$	CHCINS
3K 91	H U	H U		OCH CF CF	H U	34	152 (B) 141 (C)	++	$C_{13}H_8CIF_3N_3O_2S_2$	CHOIENS
3m	н	н	Br		н	80	141(C) 160(E)	++	$C_{14}H_9 C F_5 N_3 O_2 S_2$	CHB-N
4a	Ĥ	Ĥ	H	H	Ĉl	61	157 (B)	++	$C_{12}H_{10}DH_{3}O_{2}O_{2}O_{2}$ $C_{11}H_{*}CIN_{*}OS_{*}$	CHCINS
4b	н	н	н	OCH3	Cl	74	159 (E)	++	$C_{12}H_{10}CIN_3O_2S_2$	CHNS
4c	H	н	CH_3	OCH ₃	Cl	72	174 (G)	++	$C_{13}H_{12}ClN_3O_2S_2$	CHNS
4 d	H	H	H	OCH ₂ CF ₂ CF ₃	Cl	67	157–158 (C)	++	$C_{14}H_9ClF_5N_3O_2S_2$	CHCIFNS
4e	HU	HU	H	OCH ₃	Br Br	52 70	140 (H) 160 (C)	++	$C_{12}H_{10}BrN_3O_2S_2$	CHBrNS
41 4 0	н	н		OCH ₃	F	61	165 (G) 145 (G)	++	$C_{13}\Pi_{12}DIN_{3}U_{2}S_{2}$	CHNS
5a	Ĥ	Ĥ	H	OCH,CF,	н	63	132-136 (E)	+	$C_{13}H_{12}F_{1}N_{3}O_{2}S_{2}$ $C_{13}H_{10}F_{2}N_{2}O_{3}S_{3}$	CHNS
5b	н	н	н	OCH ₂ CF ₂ CF ₂ H	н	65	152 (E)	+	$C_{14}H_{11}F_4N_3O_2S_2$	CHNS
5c	н	н	н	$OCH_2CF_2CF_3$	H	81	148-152 (E)	+	$C_{14}H_{10}F_5N_3O_2S_2$	CHFNS
5 d	H	H	H	$OCH_2CF_2CF_2CF_3$	H	76	140 (E)	++	$C_{15}H_{10}F_7N_3O_2S_2$	CHFNS
5e 5¢	HU	HU	H	$OCH_2(CF_2)_3CF_2H$	HU	72	116-119 (J) 169-160 (D)	++	$C_{16}H_{11}F_8N_3O_2S_2$	CHFNS
51 54	н	н	л СН.	$OCH_{1}CF_{3})_{2}$	н	47	100-109 (D) 121 (E)	++	$C_{14}\Pi_9\Gamma_6N_3O_2S_2$	CHNS
5h	Ĥ	Ĥ	H H	OCH ₂ CF ₃	CH.	72	163 (E)	÷	$C_{14}H_{12}F_{3}H_{3}O_{2}O_{2}O_{2}$	CHN
5 i	н	н	CH ₃	OCH ₂ CF ₂ CF ₃	Н	47	145 (J)	+	$C_{15}H_{12}F_5N_3O_2S_2$	CHN
5j	н	н	CH ₃	$OCH_2(CF_2)_2CF_3$	н	57	115 (J)	++	$C_{16}H_{12}F_7N_3O_2S_2$	CHN
6 a	H	H	н	C ₆ H ₅ CH ₂ O	H	47	174 (E)	-	$C_{18}H_{15}N_3O_2S_2$	CHN
6b	H	н	H	4-FC ₆ H ₄ CH ₂ O	H	62	145 (C)	+	$C_{18}H_{15}N_{3}O_{2}S_{2}$	CHNS
50 63	н	н	л Н	$2,4-F_{2}\cup_{6}H_{3}\cup H_{2}\cup$ 3.5-F-C-H-CH-O	л Н	ა 9 59	117-110 (D) 159-161 (B)	+	$C_{18} \Pi_{13} \Gamma_2 N_3 O_2 S_2$	CHENS
6e	Ĥ	Ĥ	Ĥ	4-ClC_H_CH_O	Ĥ	53	144-145 (B)	+	$C_{18}H_{13}F_{2}C_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	CHCINS
6 f	н	н	н	3,5-Cl ₂ C ₆ H ₃ CH ₂ O	H	42	102-104	+	$C_{18}H_{13}Cl_2N_3O_2S_2$	CHCINS
6g	н	н	н	4-CF ₃ C ₆ H ₄ CH ₂ O	н	62	149 (E)	+	$C_{19}H_{14}F_3N_3O_2S_2$	CHFNS
6h	H	H	H	$3,5-(CF_3)_2C_6H_3CH_2O$	H	57	135–136 (C)	++	$C_{20}H_{13}F_6N_3O_2S_2$	CHFNS
61 6i	н	н ч	H H	3-UF ₃ U ₆ H ₄ U	H H	52 80	119-121 (L) 146 (F)	++	$C_{18}H_{12}F_3N_3O_2S_2$	CHENS
6k	Ĥ	Ĥ	н	2.4-F ₆ C ₆ H ₆ O	H	67	122-124 (B)	++	$C_{17}H_{12}F_{13}O_2O_2$ $C_{17}H_{12}F_{13}O_2O_2$	CHENS
61	H	H	Ĥ	4-ClC ₆ H₄O	H	79	140–141 (E)	++	$C_{17}H_{12}CIN_3O_2S_2$	CHCINS
6m	н	Н	н	3,4-Cl ₂ C ₆ H ₃ O	Н	63	116 (F)	++	$C_{17}H_{11}Cl_2N_3O_2S_2$	CHCINS
7a	H	H	OCH3	OCH ₃	H	60	139–140 (B)	0	$C_{13}H_{13}N_3O_3S_2$	CHNS
70	н ц	H U	OCH3		н u	61 99	135-137 (B)	++ ++	$C_{14}H_{12}F_3N_3O_3S_2$	CHNS
7e 7d	н	н	OCH ₃	OCH ₂ CF ₂ CF ₂ T	н	69 69	133-135 (U) 137 (C)	++	C15H13F4N3U3B2	CHENS
7e	Ĥ	Ĥ	OCH.	OCH ₂ (CF ₂) ₂ CF ₃	Ĥ	67	113–115 (B)	++	$C_{16}H_{12}F_7N_2O_3S_2$	CHFNS
7 f	Н	н	OCH ₃	OCH ₂ (CF ₂) ₃ CF ₂ H	н	82	103 (B)	++	C ₁₇ H ₁₃ F ₈ N ₃ O ₃ S ₂	CHFNS
7g	H	H	OCH ₃	4-CF ₃ C ₆ H ₄ CH ₂ O	н	54	148-149 (B)	++	$C_{20}H_{16}F_3N_3O_3S_2$	CHFNS
7h 7'	HU	H	OCH3	$3,5-(CF_3)_2C_6H_3CH_2O$	H	73	157-158 (B)	++	$C_{21}H_{15}F_6N_3O_3S_2$	CHFNS
/1 7i	н	л Н	OCH-CE		л Н	61 61	119–121 (H) 154 (K)	+ +-	$C_{18}H_{15}FN_{3}O_{3}S_{2}$	CHENS
7k	Ĥ	Ĥ	OCH ₂ CF ₃	H H	Ĥ	84	151 (J)	++	$C_{13}H_{10}F_3N_3O_2S_2$	CHNS

Table II (C	ontinued)
-------------	-----------

						yield,	mp, °C°	chemical		
compd^b	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R4	R ⁵	%	$(solv)^d$	stability	formula	anal. [/]
71	Н	Н	OCHF ₂	Н	Н	30	78 (J)	++	$C_{12}H_9F_2N_3O_2S_2$	CHNS
7 m	н	н	Н	OCHF ₂	н	46	116 (J)	++	$C_{12}H_9F_2N_3O_2S_2$	CHFNS
7 n	Н	н	OCF ₂ CF ₂ H	OCH ₃	н	88	138 (K)	++	$C_{14}H_{11}F_4N_3O_3S_2$	CHFNS
8a	CH_3	CH_3	Н	Н	н	72	155–157 (A)	0	$C_{13}H_{13}N_3OS_2$	CHNS
8b	CH ₃	CH ₃	н	Н	CH_3	39	164-166 (D)	0	$C_{14}H_{15}N_3OS_2$	CHNS
8c	CH ₃	CH_3	н	OCH ₃	H	47	170–174 (A)	-	$C_{14}H_{15}N_3O_2S_2$	CHNS
8 d	CH ₃	CH_3	Cl	$O-i-C_3H_7$	н	34	130–135 (C)	++	$C_{16}H_{18}CIN_3O_2S_2$	CHNS
8e	CH ₃	CH ₃	н	OCH ₂ CF ₃	н	51	163-165 (E)	+	$C_{15}H_{14}F_3N_3O_2S_2$	CHNS
8 f	CH ₃	CH ₃	н	OCH ₂ CF ₂ CF ₃	н	68	147–151 (J)	+	$C_{16}H_{14}F_5N_3O_2S_2$	CHFNS
8g	CH ₃	CH ₃	н	$OCH_2(CF_2)_2CF_3$	н	57	147 (J)	++	$C_{17}H_{14}F_7N_3O_2S_2$	CHFNS
$8\bar{h}$	COCH3	н	н	H	CH3	25	125 (M)	-	$C_{14}H_{13}N_3O_2S_2$	CHNS
8i	COCH ₃	н	н	OCH ₂ CF ₃	H	42	156–158 (J)	-	$C_{15}H_{12}F_3N_3O_3S_2$	CHN
8j	CO_2CH_3	н	н	OCH ₃	н	42	142 (A)	0	$C_{14}H_{13}N_3O_4S_2$	CHNS
8k	C ₆ H ₅	н	н	Н	н	63	137-141 (E)	0	$C_{17}H_{13}N_3OS_2$	CHN
81	C_6H_5	н	н	OCH ₃	н	54	130–135 (E)	-	$C_{18}H_{15}N_3O_2S_2$	CHN
8m	C_6H_5	н	CH_3	OCH ₃	CH3	50	160–165 (I)	-	$C_{20}H_{19}N_3O_2S_2$	CHN
8 n	4-CH ₃ OC ₆ H ₄	н	н	OCH ₃	H	66	162–165 (I)	0	$C_{19}H_{17}N_3O_3S_2$	CHN
8 0	4-CH ₃ OC ₆ H ₄	н	CH_3	OCH ₃	CH_3	74	162–165 (E)	0	$C_{21}H_{21}N_3O_3S_2$	CHN
9a	н	н	Н	OCH ₃	н	h		++		
9b	CO ₂ CH ₃	CO ₂ CH ₃	н	Н	н	31	146-149 (L)	++	$C_{15}H_{13}N_3O_5S_2$	CHN
9c	CO_2CH_3	CO ₂ CH ₃	Н	OCH3	н	46	140 (L)	++	$C_{16}H_{15}N_3O_6S_2$	CHN

^a From thioethers 18-25 by oxidation with *m*-chloroperbenzoic acid. See Experimental Section. ^bR⁶ = H in all compounds except 2f. ^cAll compounds decompose on mp determination. ^dRecrystallization solvent: A = acetonitrile, B = diethyl ether, C = diisopropyl ether, D = acetone, E = ethyl aceate, F = toluene, G = ethanol, H = diethyl ether/ethyl acetate, I = acetone/diisopropyl ether, J = dichloromethane/diisopropyl ether, K = cyclohexane/diisopropyl ether, L = ethyl acetate/diisopropyl ether. ^eRelative to the parent compound 2a, determined in buffered acetonitrile solution, pH 7.4. (0) as stable as 2a ($t_{1/2} \sim 7-20$ h), (-) more unstable ($t_{1/2} \sim 0.5-7$ h), (+) more stable ($t_{1/2} \sim 20-40$ h), (++) furthermore stable ($t_{1/2} \sim 40-150$ h). See Experimental Section. ^fElemental analyses are within ±0.4% of the calculated values. ^gR⁶ = CH₃. ^hSee ref 15.

Figure 1. Pharmacodynamic difference between saviprazole (HOE 731, 5d), 7b, 7d, and omeprazole. Time course of maximal inhibition of histamine-stimulated gastric acid secretion in Heidenhain-pouch dogs following iv administration of 1 mg/kg. Values are means \pm SEM of six to nine dogs. Arrow indicates the application of the test compounds. Asterisks indicate significant differences (p < 0.05) compared to omeprazole.

The observation of a "noncomplete inhibition" must not be misinterpreted as a shorter duration of action of the thienoimidazole compounds compared to omeprazole, but represents a qualitative difference to omeprazole. Experiments to elucidate the duration of antisecretory activity of saviprazole have been performed by iv administration during maximal histamine-stimulated acid secretion and monitoring the acid output for a further 2 days. A dose of 0.3 mg/kg caused an immediate 80% drop in the amount of acid produced. Acid output to histamine stimulation was about half-maximal on the second day and approached control values on the third day after administration of 5d. Similar results were obtained with omeprazole.

From omeprazole it has been known that the total acid blockade initiated a gastric antral feedback mechanism, resulting in an excessive hypergastrinemia, which is believed to cause diffuse endocrine cell hyperplasia, characterized as carcinoids in the gastric corpus after 2 years of treatment in rats.⁸ From the different pharmacodynamic profiles of the thienoimidazoles, an effect on resulting gastrin levels could be suggested. Therefore, female Wistar rats were treated orally with 30 mg/kg saviprazole or omeprazole per day for 10 weeks. Saviprazole caused an elevation of serum gastrin levels. However, these were only about 2-fold that of the control group, while omeprazole caused about a 6-fold increase in serum gastrin levels (Figure 2).

First, it has been suggested that the different pharmacodynamic behaviors of the thienoimidazoles might be related to their chemical stability. Therefore, half-lives of 5d and 7d were determined in buffered solution at different pH levels in comparison to omeprazole⁴¹ (Table VI). All compounds reveal that their stability highly depends on the pH, indicating that their inhibitory activity

⁽⁴¹⁾ Wallmark, B.; Brändström, A.; Larsson, H. Evidence for Acid-Induced Transformation of Omeprazole into an Active Inhibitor of (H⁺/K⁺)-ATPase within the Parietal Cell. *Biochim. Biophys. Acta* 1984, 778, 549-558.

Table III. Antisecretory Activity of 2-[(2-Pyridylmethyl)sulfinyl]thienoimidazoles 2-9

			ir	n vivo inhibition of gastri	c acid secretion, %		
	in vitro i	nhibition	pylorus-ligated	stomach-lumen-	Heidenhain-pouch dog		
compd	H ⁺ /K ⁺ -ATPase ^{a,b}	¹⁴ C-AP uptake ^{b,c}	rat ^{b,d}	perfused rat ^{b,e}	iv ^{b,f}	id ^b .#	
2a	ND ^h	6	68	73 ± 3 (5)	$64 \pm 8 (3)$	ND	
2b	ND	25	-88	ND	ND	ND	
2c	ND	ND	67	$72 \pm 2 (4)$	ND	ND	
2d	ND	9	-78	78 ± 4 (4)	$72 \pm 4 (6)$	ND	
2e	ND	50	-92	ND	$91 \pm 2 (3)$	ND	
2f	ND	300	0	ND	ND	ND	
2g	-16%	290	-53	$59 \pm 9(5)$	ND	ND	
2h	-20%	1000	-53	$38 \pm 5(5)$	ND	ND	
21	ND	19	-85	$82 \pm 4(5)$	$84 \pm 4(6)$	ND	
2j	ND	1000	-77	ND	ND	ND	
21	ND	1000	-85	ND		ND	
21	ND	3 1	-80	ND 91 ± 9 (5)	ND 97 \pm 9 (9)	ND	
2m 9-	ND	1000	-04	$31 \pm 3(3)$	$0/ \pm 0(0)$	ND	
91. 91.	ND 0	1000	-33	ND	ND	ND	
30 90		1	-72	$71 \pm 4(5)$	82 ± 5 (6)	36 (3)	
90 84	ND	2	-82	ND	ND	ND	
30 00	ND	1	-77	80 ± 5 (5)	87 ± 3 (6)	ND	
3 f	ND	3	-81	ND	ND	ND	
30	-36%	ND	-76	$63 \pm 5(4)$	ND	ND	
3h	-26%	ND	-71	$43 \pm 5(4)$	$52 \pm 6(3)$	ND	
3i	-65%	ND	0	ND	ND	ND	
31	-48%	61	-19	0	ND	ND	
3k	-12%	1000	-48	ND	ND	ND	
31	ND	10	-32	ND	ND	ND	
3m	-75%	2	-82	$71 \pm 4 (5)$	73 ± 3 (3)	-11 (1)	
4a	ND	1000.0	ND	$26 \pm 7 (4)$	ND	ND	
4b	ND	$31.0 \pm 9 (4)$	62	58 ± 7 (4)	$38 \pm 7 (3)$	55 (2)	
4c	-5%	230.0	64	$43 \pm 8 (4)$	ND	24 (2)	
4 d	ND	ND	-5	$38 \pm 11 (5)$	ND	ND	
4e	-48%	19 .0	-75	$62 \pm 4 (5)$	$59 \pm 7 (3)$	53 (1)	
4f	-5%	81.0	-24	$37 \pm 4 (5)$	ND	ND	
4g	0	ND	0	ND	ND	ND	
5a	-80%	3.0	-60	$96 \pm 1(5)$	$62 \pm 13 (3)$	$73 \pm 11 (3)$	
5b	-77%	2.0	-76	$89 \pm 2(5)$	$66 \pm 14 (3)$	$91 \pm 4 (3)$	
5C	-84%	1.0	-85	$81 \pm 3(5)$		ND	
5 d	-85%	$1.3 \pm 0.4 (3)$	-74 -	$72 \pm 4(5)$	$76 \pm 11 (3)$	$93 \pm 2(3)$	
5e		3.0	-72				
5I 5	ND 0007	195.0	-20	$39 \pm 7(5)$	ND 57 \pm 10 (9)		
og el	-90%	21.0 10 \pm 03 (4)	-10	$50 \pm 4 (5)$	$57 \pm 10(3)$	ND 00 ± 5 (9)	
51	_05.0%	$1.0 \pm 0.3 (4)$	-00	05 ± 7 (4) 79 ± 9 (5)	$63 \pm 6 (3)$	$52 \pm 0 (3)$	
51	ND	ND	-45	$\frac{12}{ND}$	ND	40 ± 2 (0)	
69	ND	0.5	-58	ND	ND	ND	
6h	0.5	0.5	-77	85 ± 1 (5)	$80 \pm 8 (3)$	ND	
60	ND	1.0	-76	$76 \pm 3(5)$	ND	ND	
6 d	ND	0.7	-70	70 ± 3 (5)	ND	$96 \pm 2(3)$	
6e	ND	0.4	-87	$78 \pm 3(5)$	ND	ND	
6 f	ND	1.1	-83	64 ± 4 (5)	ND	ND	
6g	ND	0.6	-9 5	$80 \pm 2(5)$	ND	94 (2)	
6ĥ	ND	1.1	-75	$43 \pm 10 (5)$	ND	87 ± 3 (3)	
6i	ND	2.2	-75	$64 \pm 3 (5)$	ND	$66 \pm 7 (3)$	
6j	ND	4.0	-58	84 ± 1 (5)	$85 \pm 3 (3)$	97 (2)	
6 k	ND	0.3	ND	$56 \pm 7 (5)$	$74 \pm 8 (3)$	ND	
61	ND	2.0	-68	$66 \pm 5(4)$	$76 \pm 10(3)$	ND	
6m	ND	2.3	-57	$49 \pm 6(5)$	$62 \pm 19(3)$	ND	
78 71	-17%	3.6	-84	$54 \pm 4(5)$	$82 \pm 10(3)$		
7D 70	4	$2.5 \pm 1.1 (3)$	-69	104 主 4 (5) 70 エ 9 (5)	$80 \pm 7(3)$	77 ± 6 (3) 47 ± 19 (0)	
7C 7d	3 _700%	U.D 10 ± 0 € (9)	-03 _74	/サエ 3 (0) 57 エ 9 (5)	30 = 10(3) 74 + 5(3)	4/エ10(3) 05エッ(3)	
7e	- 7070	1.0 ± 0.0 (0)	-52	70 ± 2 (5)	ND	66 ± 11 (3)	
7 f	12	1.0	-76	64 ± 4 (5)	ND	$63 \pm 5(3)$	
72	ND	0.5	-94	$51 \pm 5(5)$	ND	$91 \pm 6 (3)$	
7h	ND	0.5	-71	65 ± 4 (5)	ND	ND	
7i	ND	0.3	-80	$78 \pm 4 (5)$	73 ± 8 (3)	$76 \pm 6 (3)$	

Table III (Continued)

			. iı	n vivo inhibition of gastric	ic acid secretion, %			
	in vitro ir	hibition	pylorus-ligated	stomach-lumen-	Heidenhai	in-pouch dog		
compd	$\overline{\mathrm{H^{+}/K^{+}-ATP}}$ ase ^{a,b}	¹⁴ C-AP uptake ^{b,c}	rat ^{b,d}	perfused rat ^{b,e}	iv ^{b,f}	id ^{b.g}		
7j	-63%	0.8	-15	$35 \pm 8 (5)$	13 ± 3 (3)	$45 \pm 2 (3)$		
7k	0	120.0	-50	23 ± 9 (4)	ND	ND		
71	0	1000.0	-18	ND	ND	ND		
7m	0	1000.0	0	ND	ND	ND		
7 n	ND	3.0	-61	$51 \pm 6 (5)$	$65 \pm 6 (3)$	$14 \pm 1 (3)$		
8a	ND	15.0	-63	ND	ND	ND		
8b	ND	6.0	-65	58 ± 9 (4)	$46 \pm 7 (3)$	ND		
8c	ND	12.0	-70	ND	$66 \pm 6 (3)$	ND		
8d	ND	2.5	-70	32 ± 9 (6)	ND	ND		
8e	2	3.7	-26	ND	ND	54 ± 2 (3)		
8 f	ND	1.0	-44	ND	ND	ND		
8g	ND	2.6	-35	ND	ND	ND		
8 h	ND	ND	-41	ND	ND	ND		
8i	ND	32.0	-23	ND	ND	ND		
8j	ND	ND	-13	ND	ND	ND		
8k	ND	31.0	-11	ND	ND	ND		
81	ND	ND	-68	ND	ND	ND		
8m	ND	4.2	-81	$46 \pm 6 (5)$	ND	$39 \pm 17 (3)$		
8 n	ND	ND	-44	ND	ND	ND		
80	ND	3.0	-59	$24 \pm 6 (5)$	ND	ND		
9a	ND	1000.0	-24	ND	ND	ND		
9b	ND	1000.0	-20	ND	ND	ND		
9c	ND	1000.0	-23	ND	ND	ND		

^a Inhibition of H⁺/K⁺-ATPase at 10 μ M, pH = 6, IC₅₀ values (μ M), except where percentage values are noted. ^b See Experimental Section. ^c Inhibition of [¹⁴C]aminopyrine (AP) uptake as IC₅₀ (μ M), determined in isolated rabbit gastric glands after dbcAMP stimulation. ^d Dose of 5 mg/kg, ip. ^e Dose of 0.5 mg/kg, iv.; values are means ± SEM (n = number of rats). ^f Dose of 0.3 mg/kg; values are means ± SEM (n = number of dogs). ^g Dose of 1.0 mg/kg; values are means ± SEM (n = number of dogs). ^h Not determined.

Table IV. Basicity of

2-[(2-Pyridylmethyl)sulfinyl]-1H-thieno[3,4-d]imidazoles^a

compd	$\mathbf{p}K_{\mathbf{a}}^{b}$	compd	pK_{a}^{b}
2a	3.05	4b	3.44
2d	3.26	5a	3.83
2i	4.16	5 d	3.73
21	3.92	5 f	3.50
3c	3.55	6g	3.74
3m	3.52	7b	3.52

^a Determined by pH measurements. See Experimental Section for details. ^b Values within ± 0.03 .

Table V. Antisecretory Activity in Heidenhain-Pouch Dogs

compd	n	ED_{50} , mg/kg ^{a,b}	admin ^c
2a	9	0.11 (0.03-0.50)	iv
2d	9	0.11 (0.03 - 0.40)	iv
3c	12	0.10(0.02-0.41)	iv
4b	9	0.25 (0.06 - 1.05)	iv
saviprazole	15	0.10 (0.04-0.28)	iv
HOE 731 (5d)	11	0.22 (0.07-0.67)	id
7b	9	0.08 (0.02-0.25)	iv
7d	9	0.13 (0.03-0.57)	iv
	9	0.16 (0.03-0.90)	id
omeprazole	15	0.10 (0.03-0.37)	iv
	9	0.25 (0.08-0.83)	id

^a Maximal inhibition of histamine stimulated gastric acid secretion, calculated from three doses; three to six dogs per dose were used. ^bED₅₀ (95% confidence limits). ^civ = intravenous, id = intraduodenal.

Table VI. pH-Dependent Chemical Stability^a

		$t_{1/2}$	
compound	pH 7.0	pH 5.0	pH 2.0
5d	8.0 h	1.4 h	3 min
7d	23.0 h	7.8 h	11 min
omeprazole	17.0 h ^b	2.26 h	12 min

^aSee Experimental Section. ^b Value taken from the literature.⁴¹

is related to an acid activation process. Saviprazole is less stable than omeprazole both in neutral and in acidic media. In view of the kinetic properties, the lower stability of **5d**

Figure 2. Serum gastrin levels in rats after oral treatment with saviprazole at 30 mg/kg per day or omeprazole at 30 mg/kg per day. Values are means \pm SEM, n = 13 rats.

in neutral media should not be overestimated, as the plasma half-life reported for omeprazole is about 1 h.⁴² Similar results were obtained for saviprazole. Half-lives indicate that 7d is the most pH-selective compound. Compared to 5d, its enhanced stability at pH 7 and 5 is attributed to the 3-methoxy-substituted pyridine ring. In parallel to this favorable chemical stability, 7d showed an even more pronounced "noncomplete inhibition profile" (Figure 1). It can be concluded that the different pharmacological behavior of the thienoimidazole compounds is not related to an increased lability under neutral conditions.

Inhibition of the H^+/K^+ -ATPase by omeprazole could be characterized by covalent binding of its "active intermediate", the cyclic sulfenamide, to essential enzyme SH groups.⁹ It can be speculated that the differences

⁽⁴²⁾ Larsson, H.; Carlsson, E.; Junggren, U.; Olbe, L.; Sjöstrand, S. E.; Skanberg, I.; Sundell, G. Inhibition of Gastric Acid Secretion by Omeprazole in the Dog and Rat. *Gastroenterology* 1983, 85, 900-907.

between 5d, 7b, 7d, and omeprazole might be related to differences in the acid activation process and/or to different reaction pathways of the active intermediate(s) and/or to a different (metabolic) stability of the so-formed enzyme-inhibitor disulfide complexes.

Proton uptake studies in gastric vesicles done recently,⁴³ showed a faster onset of proton-pump inhibition by the thienoimidazole compounds 2i and 5d in comparison to omeprazole. To elucidate the effect of the thienoimidazoles on the different kind of sulfhydryl groups of the H⁺/K⁺-ATPase distributed to the vesicle exterior (cytosolic site of the enzyme) and the vesicle interior (luminal site),⁴⁴ experiments on proton uptake have been performed in the presence of the hydrophilic mercaptan glutathione (GSH) and the hydrophobic mercaptan dithioerythritol (DTE). The inhibitory action of omeprazole could only be prevented by DTE, whereas the effect of 2i and 5d additionally could be influenced to a minor extent by GSH.⁴³

Chemical stability data for 5d and 7d implicate that this effect is not caused by an activation process taking place in neutral media, but might be the result of a fast activation process, occurring just in the locally acidic environment of the H^+/K^+ -ATPase within the apical membrane.⁴⁵ The important role of the local pH could be demonstrated recently for omeprazole by short circuit measurements on H^+/K^+ -ATPase-containing sheets, which were absorbed to a planar lipid membrane. In an almost perfectly buffered system, omeprazole caused an increasing inhibition the more the pump was activated.⁴⁶ Therefore, it seems likely that faster activated thienoimidazoles additionally bind to some other SH groups of the proton pump than omeprazole does.

The gastric antisecretory activity of the thieno[3,4-d]imidazole compounds saviprazole (HOE 731, 5d), 7b, and 7d can be rationalized in terms of a long-acting main component and an additional short-acting one. In analogy to omeprazole, the inhibitory activity is related mainly to an irreversible covalent binding of the activated inhibitor to essential enzyme SH groups, whereas the short acting reversible component is attributed to an interference with enzyme SH groups accessible to endogenous glutathione for reactivation.

Conclusion

In addition to the known benzimidazoles, the 2-[(2pyridylmethyl)sulfinyl]-1*H*-thieno[3,4-*d*]imidazoles represent a novel class of potent inhibitors of gastric acid secretion. Irrespective of the stimulants used, these compounds block acid secretion in vitro and in vivo, indicating an interference with the gastric proton pump. Out of 85 thieno[3,4-*d*]imidazole derivatives, the most interesting ones, e.g. 5d, 7b, and 7d, combine a favorable chemical stability with an inhibitory activity comparable to omeprazole. Saviprazole (5d, HOE 731) was selected for further development. Detailed pharmacological studies at high-dose levels have shown pharmacodynamic differences between omeprazole and saviprazole, since the thienoimidazole allows significant rest-secretion of gastric acid. In consequence of this "noncomplete inhibition" of gastric acid secretion, plasma gastrin levels in rats were less elevated for saviprazole than for omeprazole. Therefore, ECL-cell hyperplasia as an indirect pharmacodynamic consequence of long-lasting inhibition of gastric secretion also might be less pronounced for saviprazole.

Experimental Section

All reactions were monitored by TLC. Unless noted otherwise, reaction mixtures were worked up by addition of water, separation of the organic layer, and extraction of the aqueous phase with dichloromethane. The combined organic extracts were washed with water or brine, dried over Na_2SO_4 , and concentrated on a rotary evaporator.

Melting points were determined on a Büchi capillary melting point apparatus (according to Dr. Tottoli) and are uncorrected.

¹H NMR spectra were recorded on a Bruker WP60 or WM270 spectrometer using CDCl_3 as solvent. Chemical shifts are given in ppm relative to tetramethylsilane as an internal standard. Mass spectra were recorded on a Kratos MS 9 or MS 80 mass spectrometer.

4-[(2,2,3,3,4,4,4-Heptafluorobuty])oxy]-2-methylpyridine N-Oxide (29d). An amount of 15.4 g (0.1 mol) of 4-nitro-2picoline N-oxide (26) was dissolved in 150 mL of dry DMF. An amount of 41.4 g (0.3 mol) of pulverized anhydrous potassium carbonate and 23 g of 2,2,3,3,4,4,4-heptafluorobutanol (96% content, Aldrich) were added, and with stirring the mixture was heated for 4 h at 70 °C. An additional amount of 13.8 g potassium carbonate was added, and stirring was continued for 6 h. After cooling to room temperature, salts were filtered off and washed with small portions of DMF. The combined filtrates were concentrated in vacuo, and the residue was dissolved in ethyl acetate and washed with water. The organic layer was dried, concentrated, and passed with ethyl acetate-methanol (3:1) over a silica gel column. Fractions were pooled and solvents were removed in vacuo, giving 22.7 g (74%): mp 65 °C; ¹H NMR (CDCl₃) δ 2.48 (s, CH₃), 4.49 (tt, ³J_{HF} = 12 Hz, ⁴J_{HF} = 0.5 Hz, OCH₂C₃F₇), 6.88 (dd, ³J_{5-H,6-H} = 7 Hz, ⁴J_{5-H,3-H} = 2 Hz, 5 H), 7.12 (d, ⁴J_{5-H,3-H} = 2 Hz, 3 H), 8.50 (d, ³J_{5-H,6-H} = 7 Hz, 6-H).

2-(Chloromethyl)-4-[(2,2,3,3,4,4,4-heptafluorobutyl)oxy]pyridine Hydrochloride (15d). An amount of 4.9 g of compound 29d, dissolved in 10 mL of acetic anhydride, was added dropwise at 90 °C to 45 mL of acetic anhydride with stirring. After 1 h the solvent was removed in vacuo. Then 50 mL of CH₃OH and a solution of 1.2 g of sodium hydroxide in 5 mL of water were added to the crude 2-(acetoxymethyl)-4-[(2,2,3,3,4,4,4-heptafluorobutyl)oxy]pyridine and stirred at room temperature for 2 h.

Solvents were removed in vacuo, and the oily residue was dissolved in dichloromethane, washed with water, and evaporated to dryness. The residue was dissolved in 50 mL of dichloromethane, and 5 mL of thionyl chloride was added dropwise with stirring. After 2 h at room temperature, the solvent and excess reagent were removed in vacuo and the residue was washed with diisopropyl ether, yielding 3.9 g (67%): mp 98-101 °C; ¹H NMR (from free base) (CDCl₃) δ 4.58 (tt, ³J_{HF} = 12 Hz, ⁴J_{HF} \leq 1 Hz, OCH₂CF₂CF₂), 4.69 (s, CH₂Cl), 6.87 (dd, ²J = 7 Hz, ³J = 2 Hz), 5-H), 7.13 (d, J = 2 Hz, 3-H), 8.50 (d, J = 7 Hz, 6-H).

2-[[[4-[(2,2,3,3,4,4,4-Heptafluorobuty])oxy]-2-pyridy]]methyl]thio]-1*H*-thieno[3,4-*d*]imidazole (21d). An amount of 18.7 g of 2-mercaptothieno[3,4-*d*]imidazole (21d). An amount of 18.7 g of 2-mercaptothieno[3,4-*d*]imidazole 11a was added to a sodium methanolate solution (prepared from 8.2 g of Na and 300 mL of methanol). To this solution was added 43.4 g of compound 15d dissolved in 100 mL methanol dropwise with stirring. After heating for 1 h under reflux, methanol was evaporated in vacuo, and the residue was dissolved in dichloromethane, washed with water, dried over MgSO₄, and concentrated in vacuo. The residue was recrystallized from ethyl acetate to give 43 g (80%): mp 117 °C; ¹H NMR (CDCl₃) δ 4.29 (s, SCH₂), 4.56 (tt, ³J_{HF} = 12 Hz, ⁴J_{HF} = 1 Hz, OCH₂C₃F₇), 6.60 (br s, NH),

⁽⁴³⁾ Beil, W.; Staar, U.; Sewing, K.-Fr. Substituted Thieno[3,4-d]imidazoles, a Novel Group of H⁺/K⁺-ATPase inhibitors. Differentiation of their Inhibition Characteristics from those of Omeprazole. Eur. J. Pharmacol. 1990, 187, 455-467.

⁽⁴⁴⁾ Nandi, J.; Meng-Ai, Z.; Ray, T. K. Role of Membrane-Associated Thiol Groups in the Functional Regulation of Gastric Microsomal (H⁺/K⁺)-Transporting ATPase System. *Biochem.* J. 1983, 213, 587-596.

⁽⁴⁵⁾ Herling, A. W.; Becht, M.; Lang, H.-J.; Scheunemann, K.-H.; Weidmann, K.; Scholl, T.; Rippel, R. The Inhibitory Effect of HOE 731 in Isolated Rabbit Gastric Glands. *Biochem. Phar*macol. 1990, 40, 1809–1814.

⁽⁴⁶⁾ Hijden, H. T. W., Mrd.; Grell, E.; de Pont, J. J. H. H. M.; Bamberg, E. Demonstration of the Electrogenicity of the Proton Translocation during the Phosphorylation in H⁺,K⁺-ATPase from Parietal Cells. J. Membr. Biol. 1990, 114, 245-256.

6.67 (2 H, s, thiophene, H), 6.88 (dd, ${}^{2}J$ = 7 Hz, ${}^{3}J$ = 2 Hz, 5-H), 7.03 (d, J = 2 Hz, 3-H), 8.53 (d, J = 7 Hz, 6-H). Anal. (C₁₅-H₁₀F₇N₃OS₂) C, H, N, S.

2-[[[4-[(2,2,3,3,4,4,4-Heptafluorobutyl)oxy]-2-pyridyl]methyl]sulfinyl]-1H-thieno[3,4-d]imidazole (5d). Forty grams (0.09 mol) of compound 21d was dissolved in 800 mL of dichloromethane. Then 500 mL of a saturated sodium bicarbonate solution was added. The mixture was chilled, and with vigorous stirring at 0 °C a solution of 20 g of m-chloroperbenzoic acid (77% content) in 150 mL of dichloromethane was added dropwise. The reaction mixture was stirred at this temperature for an additional 10 min, and after starch-iodine paper no longer showed the presence of peracid, the organic layer was separated. The aqueous layer was extracted with dichloromethane, and the combined organic layers were dried and concentrated to a rest volume of approximately 100 mL. After addition of 800 mL of diisopropyl ether, the product crystallized. After filtration and air-drying, the yield was 32 g (76%): mp 140 °C dec; ¹H NMR (CD₃OD, 270 MHz) δ 4.61 and 4.73 (dd, J = 14 Hz, CH₂SO), 4.65 (m, $OCH_2C_3C_7$), 6.96 (dd, $J_{3:H,5:H} = 2$ Hz, 3-H), 7.05 (dd, $J_{3:H,5:H} =$ 2 Hz, $J_{5-H,8-H} = 7$ Hz, 5-H), 7.10 (br, 2 H, thiophene-H), 8.36 (1 H, d, $J_{5-H,6-H} = 7$ Hz, 6-H). For elemental analysis a sample was recrystallized from ethyl acetate. Anal. $(C_{15}H_{10}F_7N_3O_2S_2)$ C, H, F, N, S.

3-Chloro-4-n-propoxy-2-picoline N-Oxide (28f). To a solution of sodium methylate, prepared from 0.51 g (22 mmol) of sodium and 100 mL of 1-propanol at - 10 °C, was added 3.6 g (20 mmol) of 3,4-dichloro-2-picoline N-oxide (prepared from known 3,4-dichloro-2-picoline³⁰ using *m*-chloroperbenzoic acid) in 20 mL of anhydrous 1-propanol. The mixture was allowed to warm slowly to room temperature and was then heated to reflux for 2 h. The solvent was removed by distillation under reduced pressure, water was added to the residue, the mixture was extracted with dichloromethane, and the solvent was evaporated off, yielding 2.6 g (65%). Colorless crystals from diisopropyl ether: mp 56-58%; ¹H NMR δ 1.05 (t, CH₂CH₃), 1.90 (m, CH₂), 2.66 (s, CH_3 , 4.03 (t, CH_2), 6.70 (d, J = 11 Hz, 6-H), 8.17 (d, J = 11 Hz, 5-H). Anal. (C₉H₁₂ClNO₂) C, H, Cl, N. Continuing reactions according to Schemes I and II afforded 19f (Table I).

5-Bromo-4-methoxy-2-picoline N-Oxide (29e). An amount of 8.2 g (35 mmol) of 4-nitro-5-bromo-2-picoline N-oxide³¹ in 50 mL of anhydrous methanol was added at - 10 °C to a sodium methylate solution prepared from 0.87 g (38 mmol) of sodium and 30 mL of methanol. The mixture was allowed to warm slowly to room temperature and was then heated under reflux for 1 h. Standard workup and crystallization from diisopropyl ether yielded 7.3 g (95%) of colorless crystals: mp 146-148 °C; ¹H NMR δ 2.50 (s, CH₃), 3.93 (s, OCH₃), 6.77 (s, 3-H), 8.40 (s, 6-H). Anal. (C₇H₈BrNO₂) C, H, Br, N. Continuing according to Schemes I and II afforded 20e (Table I).

4-[[4-(Trifluoromethyl)benzyl]oxy]-2-picoline N-Oxide (30g). Under N_2 atmosphere 11.2 g (100 mmol) of potassium tert-butylate was added to 25 mL of (183 mmol) 4-(trifluoromethyl)benzyl alcohol. After 30 min, 7.2 g (50 mmol) of 4chloro-2-picoline N-oxide and 10 mL of tert-butyl alcohol were added and the mixture was refluxed for 30 min. After workup the crude material was chromatographed on silica gel, yielding 14.8 g (87%) of product: mp 113–115 °C; ¹H NMR δ 2.54 (s, CH₃), 5.16 (s, CH₂), 6.73 and 6.87 (2 H), 7.63 (m, 4 H), 8.20 (d, 6-H). Anal. (C14H12F3NO2) C, H, F, N. Continuing according to Schemes I and II afforded 22g (Table I).

3-Methoxy-4-[(2,2,3,3,4,4,4-heptafluorobutyl)oxy]-2-picoline **N-Oxide** (31e). Under N_2 atmosphere 6.7 g (60 mmol) of potassium tert-butylate was added in portions to 20 mL (150 mmol) of 2,2,3,3,4,4,4-heptafluorobutanol at - 15 °C. After warming to 25 °C, 5.2 g (30 mmol) of 4-chloro-3-methoxy-2-picoline N-oxide (prepared from maltol methyl ether³² and subsequent reactions with aqueous ammonia, phosphorous oxychloride, and mchloroperbenzoic acid) was added in portions. After heating for 3 h at 100 °C, an additional amount of 3.35 g (30 mmol) potassium tert-butylate was added, and refluxing was continued for 2 h. After cooling to room temperature, water was added and the mixture extracted with ethyl acetate. The residue was chromatographed on silica gel (ethyl acetate-methanol) and made to crystallize with petroleum ether, yielding 4.4 g (44%): mp 128-130 °C; ¹H NMR δ 2.52 (s, CH₃), 3.88 (s, ÕCH₃), 4.56 (t, ČH₂), 6.77

(d, 5-H), 8.12 (d, 6-H). Anal. (C₁₁H₁₀F₇NO₃) C, H, F, N. Continuing according to Schemes I and II afforded 23e (Table I).

Chemical Stability. Solutions of compounds 2-9 in acetonitrile-phosphate buffer (1:3) were adjusted to pH 7.4. The initial concentrations were 3×10^{-2} M to 1×10^{-3} , depending on the different solubility. The decrease in concentration at ambient temperature was followed by TLC (SiO₂, dichloromethanemethanol (10:1) or ethyl acetate-methanol (5:1), UV detection, $\lambda = 254$ nm), each time comparing aliquot amounts to a freshly prepared standard solution. From these results half-lives were estimated, and the sulfoxides 2-9 were classified according to Table II.

pH-Dependent Chemical Stability of Saviprazole (5d), 7d, and Omeprazole. Ten milligrams of each compound was dissolved in 10 mL of acetonitrile-buffer pH 9 (1:1). Then 60 μ L was taken and adjusted to 5 mL by adding the appropriate buffer pH 7.0, 5.0, or 2.0 (0.1 M); initial concentration: $12.0 \,\mu g/mL$. Runs of 1, 2, 3, 5, 10, 15, and 30 min and 1, 3, 6, and 24 h were performed. Reactions were stopped by raising the pH to 8–10. The decrease in concentration was monitored by HPLC (nucleosil RP 18; 42% acetonitrile, 58% buffer pH 7.5, $\lambda = 280$ nm). Concentrations were plotted vs time and $t_{1/2}$ was calculated from linear regression (see Table VI).

 $\mathbf{p}\mathbf{K}_{\mathbf{a}}$ Values. Potentiometric pH measurements were carried out to determine the pK_a 's of the appropriate compounds as reported previously in detail.³⁷ A digital pH meter Autocal (Radiometer Copenhagen) PHM 83 was used. Fresh buffer solutions, pyridine, and imidazole were used as reference standards. Then 50 μ L of aqueous HCl (0.1 M) was added to 1 mL of a solution (10⁻⁵ M) of the appropriate compound in water-DMSO (8:2). The change in pH was registered after 0.5, 1, and 2 min. Measurements were done in triplicate. Values were extrapolated to zero time and presented as means (Table IV).

In Vitro Biological Assays. H⁺/K⁺-ATPase-Containing Gastric Vesicles. Membrane vesicles containing H⁺/K⁺-ATPase were prepared from pig stomach as previously described.¹⁶ The ATPase activity was measured at 37 °C as the release of inorganic phosphate from ATP. In detail, compounds at 10 μ M, or for determination of IC₅₀ values in concentrations of 0.01–100 μ M, were preincubated in enzyme-containing buffers pH 6.0. After preincubation (37 °C, 30 min), the medium of pH 6.0 was adjusted with a Hepes-Tris buffer to pH 7.4. The enzyme reaction was started by the addition of Tris-ATP. The total reaction volume was 1 mL, containing 20 μ g of vesicular protein, 4 mM MgCl₂, 10 mM KCl, 20 µg nigericin, 2 mM Tris-ATP, 10 mM Hepes, and additionally 2 mM Pipes for the preincubation medium at pH 6.0. After 4 min the reaction was stopped by the addition of 10 μ L of 50% trichloroacetic acid. The denaturated protein was spun down, and the P_1 content was determined as described.⁴⁷ The hydrolysis of ATP did not exceed 15%. Inhibition was calculated as percent inhibition against maximal stimulation, and IC_{50} was calculated by probit analysis.

¹⁴C]Aminopyrine Accumulation in Isolated Rabbit Gastric Glands. Rabbits (2-3 kg) were sacrificed by cervical fracture/dislocation during anaesthesia. High-pressure perfusion of rabbit stomachs was carried out as previously described.⁴⁸ The gastric mucosa in the corpus part was scraped off and minced with a pair of scissors. Mucosa pieces were incubated in a collagenase (1 mg/mL) containing medium for 30-45 min at 37 °C. The medium composition (in mM) was as follows: 100.0 NaCl, 5.0 KCl, 0.5 NaH₂PO₄, 1.0 Na₂HPO₄, 1.0 CaCl₂, 1.5 MgCl₂, 20.0 NaHCO₃, 20.0 Hepes, 2 mg/mL glucose, and 1 mg/mL rabbit albumin. The pH was adjusted to 7.4 with 1 M Tris. The glands were filtered through a nylon mesh to remove coarse fragments and rinsed three times with incubation medium. The glands were diluted to a final concentration of 2-4 mg dry weight/mL.

The ability of gastric glands to form acid was measured based on aminopyrine (AP) accumulation.^{17a} Samples of 1.0-mL gland suspension were equilibrated in 1.0 mL of medium containing 0.1

⁽⁴⁷⁾ Le Bel, D.; Poirier, G. G.; Beaudoin, A. R. A Convenient Me-

thod for the ATPase assay. Anal. Biochem. 1978, 85, 86–89. Berglindh, T.; Öbrink, K. J. A Method for Preparing Isolated (48)Glands from the Rabbit Gastric Mucosa. Acta Physiol. Scand. 1976, 96, 150-159.

 μ Ci/mL ¹⁴C-AP at 37 °C in a shaking water bath together with the agent to be tested. After 20 min, 1 mM dbcAMP was added, followed by a 45-min incubation period. The glands were then separated from the medium by brief centrifugation. Aliquots of supernatant and the digested gland pellet were determined in a liquid scintillation counter. The AP accumulation was calculated as the ratio between AP in intraglandular water and AP in the incubation medium.¹⁷⁶ All determinations were made in triplicate. IC₅₀ was calculated by probit analysis where 0% corresponds to basal and 100% to maximal stimulated AP ratio.

In Vivo Biological Assays. Pylorus-Ligated Rat.¹⁸ This study was performed in female Wistar rats with a body weight of 150-170 g as described previously.⁴⁹ Food was withdrawn 16 h before the beginning of the study, and water was available ad libitum. Following pylorus ligation, which was performed under ether anesthesia, the test drug was administration intraperitoneally (ip). Compounds were suspended in Tylose (1%) and administered at a volume of 2 mL/kg at a dose of 5 mg/kg. Gastric acid secretion was stimulated by a subcutaneous (sc) injection of Desglugastrin at a dose of 400 μ g/kg. This latter injection was repeated 1 h later. Three hours after the beginning of the experiment, the animals were killed, the stomach was excised, and the accumulated gastric juice was collected and its volume measured. Acid concentration was measured by electrotitration against 100 mM NaOH to an endpoint of pH 7. Total acid output $(mmol of H^+/3 h)$ was calculated. Percent inhibition of the treated rat group (n = 8 rats) was calculated against the control group (n = 10 rats).

Stomach-Lumen-Perfused Rat.¹⁹ Gastric acid secretion in anesthetized male Sprague-Dawley rats with a body weight of 300-350 g was determined as described.⁴⁹ Briefly, the animals were fasted for 18 h prior to the experiment and received water ad libitum. They were anesthetized with 30% (w/v) urethane (5 mg/kg im) and tracheotomized. The esophagus and pylorus were ligated, and a double lumen perfusion cannula was inserted and fixed in the forestomach. The stomach was perfused continuously with warm (37 °C) saline at a rate of 1 mL/min. The perfusate was collected at 15-min periods and its acid concentration measured by electrotitration against 100 mM NaOH to an endpoint of pH 7, and acid output (μ mol of H⁺/15 min) was calculated. To stimulate acid secretion, histamine (10 mg/kg per h) was administered after a basal period of 45 min by iv infusion into the jugular vein. About 90 min after the onset of the secretagogue infusion, acid output had reached a stable plateau.⁵⁰ Then compounds were administered iv (25% DMSO, 1 mL/rat). Maximal inhibition was calculated as percent change against predrug value and presented as mean \pm SEM with n as the number of rats.

Heidenhain-Pouch Dogs.²⁰ Six male Beagle dogs were equipped with a Heidenhain-pouch as described previously.⁴⁹ For intraduodenal (id) administration studies, three dogs received an additional cannula in the flexura duodenojejunalis. The dogs were trained to stay in a Pawlow stand. Food was withdrawn 18 h prior to the experiment and water was available ad libitum. Gastric acid secretion was induced with an iv infusion of 0.05 mg/kg per h of histamine, which produced a maximal stimulation. Gastric juice was collected from the pouch at 30-min intervals, and acidity was measured by titration against 100 mM NaOH to an endpoint of pH 7, and acid output (mmol H⁺/30 min) was calculated. Drugs were administered at doses of 0.3 mg/kg iv or 1 mg/kg id at a volume of 20 mL per dog as soon as acid secretion had stabilized. Compounds were dissolved in 25% DMSO. Maximal inhibition was calculated as percent change against predrug value and presented as mean \pm SEM with *n* as the number of different dogs (Table III). ED₅₀ values and confidence limits (95%) were calculated according to Lichtfield and Wilcoxon⁵¹ (Table V).

- (49) Herling, A. W.; Ljungström, M. Effects of Verapamil on Gastric Acid Secretion In-Vitro and In-Vivo. Eur. J. Pharmacol. 1988, 156, 341-350.
- (50) Herling, A. W.; Bickel, M. The Stimulatory Effect of Forskolin on Gastric Acid Secretion in Rats. Eur. J. Pharmacol. 1986, 125, 233-239.
- (51) Lichtfield, J. T.; Wilcoxon, F. A Simplified Method of Evaluating Dose-Effect Experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99-113.

Determination of Serum Gastrin Levels in Rats. Female Wistar rats (90-110 g) were treated orally for 10 weeks with 30 mg/kg per day HOE 731 (n = 13) or omeprazole (n = 13), representing 30-fold of the ID₅₀ values in conscious rats. At days 1 to 3, rats received HOE 731 or omeprazole by intraperitoneal administration, to cause gastric acid inhibition and therefore to reduce the acidic degradation of subsequent orally administered test compounds to 10 weeks. The compounds were suspended in potato starch mucilage (20 mg/mL) and administered at volume of 2 mL/kg. A control group (n = 13) was also included in the experiment. Blood samples were collected retroorbitally during ether anesthesia. Serum gastrin levels (pg/mL) were determined by using a commercially available RIA kit (Gastrin RIAKit II, Dainabot Co., Ltd.) and presented as means ±SEM (Figure 2). Significant differences (p < 0.05) were calculated by Students t-test with n = number of rats.

Acknowledgment. We thank Birgit Baumann for skillful typing of the manuscript and Manfred Rösner for revision.

Registry No. 2a, 111371-25-6; 2b, 111371-29-0; 2c, 111371-31-4; 2d, 111371-30-3; 2e, 111371-71-2; 2f, 111371-92-7; 2g, 122307-53-3; 2h, 122307-55-5; 2i, 111371-26-7; 2j, 111371-27-8; 2k, 111371-28-9; 21, 111371-75-6; 2m, 137543-05-6; 3a, 122307-46-4; 3b, 137543-06-7; 3c, 111371-33-6; 3d, 137543-07-8; 3e, 137543-08-9; 3f, 137543-09-0; 3g, 137543-10-3; 3h, 137543-11-4; 3i, 137543-12-5; 3j, 137543-13-6; 3k, 137543-14-7; 3l, 137543-15-8; 3m, 122307-26-0; 4a, 122307-51-1; 4b, 122307-28-2; 4c, 137543-16-9; 4d, 137543-17-0; 4e, 122307-27-1; 4f, 137543-18-1; 4g, 122307-48-6; 5a, 132969-12-1; 5b, 132969-15-4; 5c, 132969-16-5; 5d, 121617-11-6; 5e, 132969-13-2; 5f, 137543-19-2; 5g, 137543-20-5; 5h, 137543-21-6; 5i, 137543-22-7; 5j, 137543-23-8; 6a, 111371-87-0; 6b, 124845-98-3; 6c, 124846-00-0; 6d, 124846-01-1; 6e, 124846-03-3; 6f, 124846-04-4; 6g, 124845-50-7; 6h, 124845-99-4; 6i. 124846-09-9; 6j, 124846-15-7; 6k, 124846-10-2; 6l, 124846-20-4; 6m, 125668-49-7; 7a, 122307-43-1; 7b, 122307-22-6; 7c, 122307-23-7; 7d, 122307-24-8; 7e, 122307-25-9; 7f, 122320-36-9; 7g, 124846-06-6; 7h, 124846-07-7; 7i, 124846-05-5; 7j, 122307-59-9; 7k, 137543-24-9; 71, 122307-57-7; 7m, 137543-25-0; 7n, 122307-61-3; 8a, 111371-78-9; 8b, 111372-07-7; 8c, 111371-80-3; 8d, 137543-26-1; 8e, 137543-27-2; 8f, 137543-28-3; 8g, 132969-14-3; 8h, 137543-29-4; 8i, 137543-30-7; 8j, 111371-81-4; 8k, 122307-92-0; 8l, 122320-37-0; 8m, 122307-93-1; 8n, 122307-95-3; 8o, 122332-68-7; 9a, 106850-02-6; 9b, 122308-01-4; 9c, 122308-00-3; 11a, 90070-09-0; 15d-HCl, 137543-31-8; 18a, 111371-74-5; 18b·2HCl, 137543-32-9; 18c·2HCl, 111371-67-6; 18d-2HBr, 111371-68-7; 18e-2HCl, 111371-70-1; 18f-2HCl, 111371-91-6; 18g, 122307-52-2; 18h, 122307-54-4; 18i, 111371-35-8; 18j, 111371-73-4; 18k, 111371-72-3; 18l-2HCl, 111371-66-5; 18m, 137543-33-0; 19a, 122307-45-3; 19b, 137543-34-1; 19c, 111371-96-1; 19d, 137543-35-2; 19e, 137543-36-3; 19f, 137543-37-4; 19g, 137543-38-5; 19h, 137543-39-6; 19i, 137543-40-9; 19j, 137543-41-0; 19k, 137543-42-1; 19l, 137543-43-2; 19m, 122307-40-8; 20a, 122307-50-0; 20b, 122307-32-8; 20c, 137543-44-3; 20d, 137543-45-4; 20e, 122307-36-2; 20f, 137543-46-5; 20g, 122307-47-5; 21a, 137543-47-6; 21b, 137543-48-7; 21c, 137543-49-8; 21d, 132969-11-0; 21e, 137543-50-1; 21f, 137543-51-2; 21g, 137543-52-3; 21h, 137543-53-4; 21i, 137543-54-5; 21j, 137543-55-6; 22a, 111371-65-4; 22b, 124845-87-0; 22c, 124845-89-2; 22d, 124845-90-5; 22e, 124845-92-7; 22f, 124866-70-2; 22g, 124845-49-4; 22h, 124845-88-1; 22i, 124845-96-1; 22j, 124846-14-6; 22k, 124845-97-2; 221, 124846-19-1; 22m, 124846-26-0; 23a, 122307-42-0; 23b, 122307-66-8; 23c, 122307-80-6; 23d, 122307-79-3; 23e, 122307-81-7; 23f, 122307-82-8; 23g, 124845-93-8; 23h, 124845-94-9; 23i, 124866-71-3; 23j, 122307-58-8; 23k, 137543-56-7; 23l, 122307-56-6; 23m, 137543-57-8; 23n, 122307-60-2; 24a-2HCl, 111371-77-8; 24b-2HCl, 111371-83-6; 24c.2HCl, 137543-58-9; 24d.2HCl, 137543-59-0; 24e-2HCl, 137543-60-3; 24f-2HCl, 137543-61-4; 24g-2HCl, 137543-62-5; 24h.2HCl, 137543-63-6; 24i, 137543-64-7; 24j, 111371-37-0; 24k, 122307-83-9; 24l, 122307-84-0; 24m, 122307-85-1; 24n, 122307-87-3; 24o, 122307-88-4; 25a, 106849-95-0; 25b, 111371-97-2; 25c, 122307-99-7; 26, 5470-66-6; 28f, 137543-65-8; 29d, 132969-09-6; 29e, 108004-86-0; 30g, 137543-66-9; 31e, 122307-69-1; ATPase, 9000-83-3; 2,2,3,3,4,4,4-heptafluorobutanol, 375-01-9; 3,4-dichloro-2-picoline N-oxide, 108004-98-4; 4-nitro-5-bromo-2-picoline N-oxide, 62516-08-9; 4-(trifluoromethyl)benzyl alcohol, 349-95-1; 4-chloro-2-picoline N-oxide, 696-08-2; 4chloro-3-methoxy-2-picoline N-oxide, 122307-41-9.